Способ получения наноматериалов. Методы получения наноструктур Процессы получения нанообъектов «сверху - вниз» и «снизу - вверх»

К настоящему времени разработано большое количество методов и способов получения наноматериалов. Это обусловлено разнообразием состава и свойств наноматериалов, с одной стороны, а с другой – позволяет расширить ассортимент данного класса веществ, создавать новые и, уникальные образцы. Формирование наноразмерных структур может происходить в ходе таких процессов, как фазовые превращения, химическое взаимодействие, рекристаллизация, аморфизация, высокие механические нагрузки, биологический синтез. Как правило, формирование наноматериалов возможно при наличии существенных отклонений от равновесных условий существования вещества, что требует создания специальных условий и, зачастую, сложного и прецизионного оборудования. Совершенствование ранее известных и разработка новых методов получения наноматериалов определило основные требования, которым они должны соответствовать, а именно:

· метод должен обеспечивать получение материала контролируемого состава с воспроизводимыми свойствами;

· метод должен обеспечивать временную стабильность наноматериалов, т.е. в первую очередь защиту поверхности частиц от самопроизвольного окисления и спекания в процессе изготовления;

· метод должен иметь высокую производительность и экономичность;

· метод должен обеспечивать получение наноматериалов с определенным размером частиц или зерен, причем их распределение по размерам должно быть, при необходимости, достаточно узким.

Следует отметить, что в настоящее время не существует метода, отвечающего в полной мере всей совокупности требований. В зависимости от способа получения такие характеристики наноматериалов, как средний размер и форма частиц, их гранулометрический состав, величина удельной поверхности, содержание в них примесей и др., могут колебаться в весьма широких пределах. Например, нанопорошки в зависимости от метода и условий изготовления могут иметь сферическую, хлопьевидную, игольчатую или губчатую форму; аморфную или мелкокристаллическую структуру. Методы получения наноматериалов делятся на механические, физические, химические и биологические. Т.е. в основе данной классификации лежит природа процесса синтеза наноматериалов. В основе механических методов получения лежит воздействие больших деформирующих нагрузок: трения, давления, прессования, вибрации, кавитационные процессы и т.п. Физические методы получения основываются на физических превращениях: испарении, конденсации, возгонке, резком охлаждении или нагреве, распылении расплава и т.п. К химическим относятся методы, основным диспергирующим этапом которых являются: электролиз, восстановление, термическое разложение. Биологические методы получения основаны на использовании биохимических процессов, происходящих в белковых телах. Методы механического измельчения применительно к наноматериалам часто называют механосинтезом. Основой механосинтеза является механическая обработка твёрдых веществ. Механическое воздействие при измельчении материалов является импульсным, т.е. возникновение поля напряжений и его последующая релаксация происходят не в течение всего времени пребывания частиц в реакторе, а только в момент соударения частиц и в короткое время после него. Механическое воздействие является также и локальным, так как происходит не во всей массе твёрдого вещества, а там, где возникает и затем релаксирует поле напряжений. Благодаря импульсности и локальности в небольших областях материала в течение короткого времени сосредотачиваются большие нагрузки. Это приводит к возникновению в материале дефектов, напряжений, полос сдвига, деформаций, трещин. В результате происходит измельчение вещества, ускоряется массоперенос и перемешивание компонентов, активируется химическое взаимодействие твёрдых реагентов. В результате механического истирания и механического сплавления может быть достигнута более высокая взаимная растворимость некоторых элементов в твёрдом состоянии, чем возможна в равновесных условиях. Размол проводится в шаровых, планетарных, вибрационных, вихревых, гироскопических, струйных мельницах, аттриторах. Измельчение в этих устройствах происходит в результате ударов и истирания. Разновидностью метода механического измельчения является механохимический способ. При тонком измельчении смеси различных компонентов между ними ускоряется взаимодействие. Кроме того, возможно протекание химических реакций, которые при контакте, не сопровождающемся измельчением, вообще не происходят при таких температурах. Эти реакции называются механохимическими. С целью формирования наноструктуры в объемных материалах используют специальные механические схемы деформирования, которые позволяют достичь больших искажений структуры образцов при относительно низких температурах. Соответственно, к интенсивной пластической деформации относятся следующие методы: – кручение под высоким давлением; – равноканальное угловое прессование (РКУ–прессование); – метод всесторонней ковки; – равноканальная угловая вытяжка (РКУ–вытяжка); – метод «песочных часов»; – метод интенсивного трения скольжением. В настоящее время большинство результатов получено первыми двумя методами. В последнее время разрабатываются методы получения наноматериалов с использованием механического воздействия различных сред. К этим способам относятся кавитационно–гидродинамический, вибрационный способы, способ ударной волны, измельчение ультразвуком и детонационный синтез. Кавитационно–гидродинамический метод служит для получения суспензий нанопорошков в различных дисперсионных средах. Кавитация – от лат. слова «пустота» – образование в жидкости полостей (кавитационных пузырьков или каверн), заполненных газом, паром или их смесью. В ходе процесса кавитационные эффекты, вызванные образованием и разрушением парогазовых микропузырьков в жидкости в течение 10–3 – 10–5 с при давлениях порядка 100 – 1000 МПа, приводят к разогреву не только жидкостей, но и твёрдых тел. Это воздействие вызывает измельчение частиц твёрдого вещества. Измельчение ультразвуком также основано на расклинивающем действии кавитационных ударов. В основе вибрационного метода получения наноматериалов лежит резонансная природа эффектов и явлений, которые обеспечивают минимальные энергозатраты при проведении процессов и высокую степень гомогенизации многофазных сред. Принцип действия заключается в том, что какой–либо сосуд подвергается вибрационному воздействию с определённой частотой и амплитудой. Наночастицы алмаза можно получать детонационным синтезом. В способе используется энергия взрыва, при этом достигается давление в сотни тысяч атмосфер и температуры до нескольких тысяч градусов. Эти условия соответствуют области термодинамической устойчивости фазы алмаза. К физическим методам получения УД материалов относятся методы распыления, процессы испарения–конденсации, вакуум–сублимационная технология, методы превращений в твёрдом состоянии. Метод распыления струи расплава жидкостью или газом заключается в том, что тонкая струя жидкого материала подается в камеру, где разбивается в мелкие капли потоком сжатого инертного газа или струей жидкости. В качестве газов в этом методе используют аргон или азот; в качестве жидкостей – воду, спирты, ацетон, ацетальдегид. Формирование наноструктур возможно способом закалки из жидкого состояния или спиннингованием. Способ состоит в получении тонких лент с помощью быстрого (не менее 106 К/с) охлаждения расплава на поверхности вращающегося диска или барабана. Физические методы. Методы испарения–конденсации основаны на получении порошков в результате фазового перехода пар – твёрдое тело или пар – жидкость – твёрдое тело в газовом объёме либо на охлаждаемой поверхности. Сущность метода состоит в том, что исходное вещество испаряется путём интенсивного нагрева, а затем резко охлаждается. Нагрев испаряемого материала может осуществляться различными способами: резистивным, лазерным, плазменным, электрической дугой, индукционным, ионным. Процесс испарения–конденсации можно проводить в вакууме или среде нейтрального газа. Электрический взрыв проводников проводят в аргоне или гелии при давлении 0,1 – 60 МПа. В этом методе тонкие проволочки металла диаметром 0,1 – 1 мм помещают в камеру и импульсно подают к ним ток большой силы. Продолжительность импульса 10–5 – 10–7 с, плотность тока 104 – 106 А/мм 2 . При этом проволочки мгновенно разогреваются и взрываются. Образование частиц происходит в свободном полёте. Вакуум–сублимационная технология получения наноматериалов включает три основные стадии. На первой стадии готовится исходный раствор обрабатываемого вещества или нескольких веществ. Вторая стадия – замораживания раствора – имеет целью зафиксировать равномерное пространственное распределение компонентов, присущее жидкости для получения минимально возможного размера кристаллитов в твёрдой фазе. Третья стадия – удаление из замороженного раствора кристаллитов растворителя путём его возгонки. Существует ряд методов получения наноматериалов, в которых диспергирование осуществляется в твёрдом веществе без изменения агрегатного состояния. Одним из способов получения массивных наноматериалов является способ контролируемой кристаллизации из аморфного состояния. Метод предполагает получение аморфного материала закалкой из жидкого состояния, а затем в условиях контролируемого нагрева проводится кристаллизация вещества. В настоящее время наиболее распространенным методом получения углеродных нанотрубок является метод термического распыления графитовых электродов в плазме дугового разряда. Процесс синтеза осуществляется в камере, заполненной гелием под высоким давлением. При горении плазмы происходит интенсивное термическое испарение анода, при этом на торцевой поверхности катода образуется осадок, в котором формируются нанотрубки углерода. Образующиеся многочисленные нанотрубки имеют длину порядка 40 мкм. Они нарастают на катоде перпендикулярно плоской поверхности его торца и собраны в цилиндрические пучки диаметром около 50 мкм. Пучки нанотрубок регулярно покрывают поверхность катода, образуя сотовую структуру. Ее можно обнаружить, рассматривая осадок на катоде невооруженным глазом. Пространство между пучками нанотрубок заполнено смесью неупорядоченных наночастиц и одиночных нанотрубок. Содержание нанотрубок в углеродном осадке (депозите) может приближаться к 60%. Химические методы получения наноразмерных материалов можно разделить на группы, в одну из которых можно отнести методы, где наноматериал получают по той или иной химической реакции, в которых участвуют определённые классы веществ. В другую можно отнести различные варианты электрохимических реакций. Метод осаждения заключается в осаждении различных соединений металлов из растворов их солей с помощью осадителей. Продуктом осаждения являются гидроксиды металлов. Регулированием рН и температуры раствора возможно создание оптимальных для получения наноматериалов условий осаждения, при которых повышаются скорости кристаллизации и образуется высокодисперсный гидроксид. Затем продукт прокаливают и, при необходимости, восстанавливают. Получаемые нанопорошки металлов имеют размер частиц от 10 до 150 нм. Форма отдельных частиц обычно близка к сферической. Однако, этим методом, варьируя параметры процесса осаждения, можно получать порошки игольчатой, чешуйчатой, неправильной формы. Золь–гельный метод первоначально был разработан для получения порошка железа. Он сочетает процесс химической очистки с процессом восстановления и основан на осаждении из водных растворов нерастворимых металлических соединений в виде геля, получаемого с помощью модификаторов (полисахаридов), с последующим их восстановлением. В частности, содержание Fe в порошке составляет 98,5 – 99,5 %. В качестве сырья можно использовать соли железа, а также отходы металлургического производства: лом металлов или отработанный травильный раствор. Благодаря использованию вторичного сырья, метод обеспечивает возможность производства чистого и дешёвого железа. Этим методом можно получать и другие классы материалов в наносостоянии: оксидную керамику, сплавы, соли металлов и др. Восстановление оксидов и других твердых соединений металлов является одним из наиболее распространенных и экономичных способов. В качестве восстановителей используются газы – водород, монооксид углерода, конвертированный природный газ, твёрдые восстановители – углерод (кокс, сажа), металлы (натрий, калий), гидриды металлов. Исходным сырьем могут быть оксиды, различные химические соединения металлов, руды и концентраты после соответствующей подготовки (обогащение, удаление примесей и т.п.), отходы и побочные продукты металлургического производства. На размер и форму получаемого порошка оказывают влияние состав и свойства исходного материала, восстановителя, а также температура и время восстановления. Сущность способа химического восстановления металлов из растворов заключается в восстановлении ионов металла из водных растворов их солей различными восстановителями: Н2, СО, гидразин, гипофосфит, формальдегид и др. В методе газофазных химических реакций синтез наноматериалов осуществляется за счёт химического взаимодействия, протекающего в атмосфере паров легколетучих соединений. Нанопорошки изготавливают также с помощью процессов термической диссоциации или пиролиза. Разложению подвергаются соли низкомолекулярных органических кислот: формиаты, оксалаты, ацетаты металлов, а также карбонаты и карбонилы металлов. Температурный интервал диссоциации составляет 200 – 400 о С. Метод электроосаждения заключаются в осаждении металлического порошка из водных растворов солей при пропускании постоянного тока. Методом электролиза получают примерно 30 металлов. Они имеют высокую чистоту, поскольку в ходе электролиза происходит рафинирование. Осаждающиеся на катоде металлы в зависимости от условий электролиза могут получаться в виде порошка или губки, дендритов, которые легко поддаются механическому измельчению. Такие порошки хорошо прессуются, что важно при производстве изделий. Наноматериалы могут производиться и в биологических системах. Как оказалось, природа использует материалы наноразмеров миллионы лет. Например, во многих случаях живые системы (некоторые бактерии, простейшие организмы и млекопитающие) производят минеральные вещества с частицами и микроскопическими структурами в нанометровом диапазоне размеров. Было установлено, что биологические наноматериалы отличаются от других, поскольку их свойства вырабатывались эволюционным путём в течение длительного времени. В процессе биоминерализации действуют механизмы тонкого биологического контроля, в результате чего производятся материалы с чётко определёнными характеристиками. Это обеспечило высокий уровень оптимизации их свойств по сравнению со многими синтетическими наноразмерными материалами. Живые организмы могут быть использованы как прямой источник наноматериалов, свойства которых могут быть изменены путём варьирования биологических условий синтеза или при переработке после извлечения. Наноматериалы, полученные биологическими методами, могут быть исходным материалом для некоторых стандартных методов синтеза и обработки наноматериалов, а также в ряде технологичеких процессов. Пока ещё работ в этой области немного, но уже есть ряд примеров, которые показывают, что в этом направлении существует значительный потенциал для будущих достижений. В настоящее время наноматериалы могут быть получены из ряда биологических объектов, а именно:

1) ферритинов и связанных с ними белков, содержащих железо;

2) магнетотактических бактерий;

3) псевдозубов некоторых моллюсков;

4) с помощью микроорганизмов путём извлечения некоторых металлов из природных соединений.

Ферритины – это класс белков, обеспечивающих для живых организмов возможность синтезировать частицы гидроксидов и оксифосфатов железа нанометрового размера. Возможно также получение нанометаллов с помощью микроорганизмов. Процессы использования микроорганизмов можно условно разделить на три группы. К первой группе относятся процессы, нашедшие применение в промышленности. Сюда входят: бактериальное выщелачивание меди из сульфидных материалов, бактериальное выщелачивание урана из руд, отделение примесей мышьяка от концентратов олова и золота. В некоторых странах в настоящее время до 5 % меди, большое количество урана и цинка получают микробиологическими методами. Ко второй группе относятся микробиологические процессы, достаточно хорошо изученные в лабораторных условиях, но не доведённые до промышленного использования. Сюда относятся процессы извлечения марганца, висмута, свинца, германия из бедных карбонатных руд. Как оказалось, с помощью микроорганизмов можно вскрывать тонко вкраплённое золото в арсенопиритных концентратах. Золото, которое относится к трудно окисляемым металлам, под воздействием некоторых бактерий образует соединения, и за счёт этого может быть извлечено из руд. К третьей группе относятся теоретически возможные процессы, требующие дополнительного изучения. Это процессы получения никеля, молибдена, титана, таллия. Считается, что в определённых условиях применение микроорганизмов может быть использовано при переработке бедных руд, отвалов, «хвостов» обогатительных фабрик, шлаков.

Введение

1 Возникновение и развитие нанотехнологии

2 Основы технологии наноматериалов

2.1 Общая характеристика

2.2 Технология консолидированных материалов

2.2.1 Порошковые технологии

2.2.3 Контролируемая кристаллизавия из аморфного состояния

2.2.4 Технология пленок и покрытий.

2.3 Технология полимерных, пористых, трубчатых и биологических наноматериалов

2.3.1 Гибридные и супрамолекулярные материалы

2.3.3 Трубчатые материалы

2.3.4 Полимерные материалы

3 Общая характеристика применения наноматериалов

Заключение

В последние несколько лет нанотехнология стала рассматриваться не только как одна из наиболее многообещающих ветвей высокой технологии, но и как системообразующий фактор экономики 21 века – экономики, основанной на знаниях, а не на использовании природных ресурсов или их переработке. Помимо того, что нанотехнология стимулирует развитие новой парадигмы всей производственной деятельности («снизу-вверх» - от отдельных атомов - к изделию, а не «сверху вниз», как традиционные технологии, в которых изделие получают путем отсечения излишнего материала от более массивной заготовки), она сама является источником новых подходов к повышению качества жизни и решению многих социальных проблем в постиндустриальном обществе. По мнению большинства экспертов в области научно-технической политики и инвестирования средств, начавшаяся нанотехнологическая революция охватит все жизненно важные сферы деятельности человека (от освоения космоса - до медицины, от национальной безопасности - до экологии и сельского хозяйства), а ее последствия будут обширнее и глубже, чем компьютерной революции последней трети 20 века. Все это ставит задачи и вопросы не только в научно-технической сфере, но и перед администраторами различного уровня, потенциальными инвесторами, сферой образования, органами государственного управления и т.д.


Нанотехнология сформировалась на основе революционных изменений в компьютерных технологиях. Электроника как целостное направление возникло около 1900 г. и продолжала бурно развиваться в течение всего прошлого столетия. Исключительно важным событием в ее истории стало изобретение транзистора в 1947 г. После этого началась эпоха расцвета полупроводниковой техники, при которой размеры создаваемых кремниевых устройств постоянно уменьшались. Одновременно с этим непрерывно возрастали быстродействие и объем магнитных и оптических запоминающих устройств.

Однако по мере приближения размеров полупроводниковых устройств к 1 микрону в них начинают проявляться квантово-механические свойства вещества, т.е. необычные физические явления (типа туннельного эффекта). Можно с уверенностью предположить, что при сохранении нынешних темпов развития мощности компьютеров вся полупроводниковая технология примерно через 5-10 лет столкнется с проблемами фундаментального характера, так как быстродействие и степень интеграции в ЭВМ достигнут некоторых «принципиальных» границ, определяемых известными нам законами физики. Таким образом, дальнейший прогресс науки и техники требует от исследователей существенного «прорыва» к новым принципам работы и новым технологическим приемам.

Такой прорыв может быть осуществлен только за счет использования нанотехнологий, которые позволят создать целый ряд принципиально новых производственных процессов, материалов и устройств, например нанороботов .

Расчеты показывают, что использование нанотехнологий может повысить основные характеристики полупроводниковых вычислительных и запоминающих устройств на три порядка, т.е. в 1000 раз .

Однако нанотехнологию не стоит сводить только к локальному революционному прорыву в электронике и компьютерных технологиях. Уже сейчас получен ряд исключительно важных результатов, позволяющих надеяться на существенный прогресс в развитии других направлений науки и техники.

На многих объектах в физике, химии и биологии показано, что переход на наноуровень приводит к появлению качественных изменений в физико-химических свойствах отдельных соединений и получаемых на их основе систем. Речь идет о коэффициентах оптического сопротивления, электропроводности, магнитных свойствах, прочности, термостойкости. Более того, согласно наблюдениям новые материалы, получаемые с использованием нанотехнологий, значительно превосходят по своим физическим, механическим, термическим и оптическим свойствам аналоги микрометрического масштаба.

На основе материалов с новыми свойствами уже сейчас создаются новые типы солнечных батарей, преобразователей энергии, экологически безопасных продуктов и многое другое. Уже созданы высокочувствительные биологические датчики (сенсоры) и другие устройства, позволяющие говорить о возникновении новой науки - нанобиотехнологии и имеющие огромные перспективы практического применения. Нанотехнология предлагает новые возможности микрообработки материалов и создания на этой основе новых производственных процессов и новых изделий, что должно оказать революционное воздействие на экономическую и социальную жизнь будущих поколений .


2.1 Общая характеристика

Структура и соответственно свойства наноматериалов формируются на стадии их изготовлёния. Вполне очевидно значение технологии как основы для обеспечения стабильных и оптимальных эксплуатационных характеристик наноматериалов; это важно также с точки зрения их экономичности.

Для технологии наноматериалов в соответствии с многообразием последних характерно сочетание, с одной стороны, металлургических, физических, химических и биологических методов, а с другой стороны, традиционных и принципиально новых приемов. Так, если подавляющее большинство методов получения консолидированных наноматериалов достаточно традиционны, то такие операции, как изготовление, например, «квантовых загонов» с помощью сканирующего туннельного микроскопа, формирование квантовых точек самосборкой атомов или использование ионно-трековой технологии для создания пористых структур в полимерных материалах основаны на принципиально иных технологических приемах.

Весьма разнообразны и методы молекулярной биотехнологии. Все это усложняет изложение основ технологии наноматериалов, учитывая и то, что многие технологические подробности («ноу-хау») авторы описывают только в общих чертах, а зачастую сообщение носит рекламный характер. Далее проанализированы лишь основные и наиболее характерные технологические приемы.


2.2.1 Порошковые технологии

Под порошком понимают совокупность находящихся в соприкосновении индивидуальных твердых тел (или их агрегатов) небольших размеров - от нескольких нанометров до тысячи микрон . Применительно к изготовлению наноматериалов в качестве исходного сырья используют ультрадисперсные порошки, т.е. частицы размером не более 100 им, а также более крупные порошки, полученные в условиях интенсивного измельчения и состоящие из мелких кристаллитов размером, подобным указанным выше.

Последующие операции порошковой технологии - прессование, спекание, горячее прессование и т. п. - призваны обеспечить получение образца (изделия) заданных форм и размеров с соответствующей структурой и свойствами. Совокупность этих операций часто называют, по предложению М.Ю. Бальшина, консолидацией. Применительно к наноматериалам консолидация должна обеспечить, с одной стороны, практически полное уплотнение (т.е. отсутствие в структуре макро- и микропор), а с другой стороны, сохранить наноструктуру, связанную с исходными размерами ультрадисперсного порошка (т. е. размер зерен в спеченных материалах должен быть как можно меньше и во всяком случае менее 100 нм).

Методы получения порошков для изготовления наноматериалов весьма разнообразны; их условно можно разделить на химические и физические, основные, из которых с указанием наиболее характерных ультрадисперсных порошков, приведены в Таблице 1.


Для устранения остаточной пористости необходима термическая обработка спрессованных образцов – спекание. Однако применительно к изготовлению наноматериалов обычные режимы спекания порошковых объектов не позволяют сохранить исходную наноструктуру. Процессы роста зерен (рекристаллизадия) и уплотнения при спекании (усадка), являясь диффузионно-контролируемыми, идут параллельно, накладываясь друг на друга, и совместить высокую скорость уплотнения с предотвращением рекристаллизации нелегко.

Таким образом, использование высокоэнергетических методов консолидации, предполагающих применение высоких статических и динамических давлений и умеренных температур, позволяет в известной степени задержать рост зерен.

Обычные режимы прессования и спекання ультрадисперсных порошков могут использоваться для получения наноструктурных пористых полуфабрикатов, подвергаемых затем для полной консолидации операциям обработки давлением. Так, медные порошки, полученные конденсационным методом, с размером частиц ~35 нм с оксидной (Сu 2 O 3) пленкой толщиной 3,5 нм после прессования при давлении 400 МПа и неизотермического спекания в водороде до 230 ºС (скорость нагрева 0,5 ºС/мин) приобретали относительную плотность 90% с размером зерна 50 нм . Последующая гидростатическая экструзия приводила к получению беспористых макрообразцов, обладающих высокой прочностью и пластичностью (предел текучести при сжатии 605 МПа, относительное удлинение 18 %).

Задержать рост зерен при обычном спекании можно, используя специальные неизотермические режимы нагрева. В этом случае удается за счет конкуренции механизмов усадки и роста зерен оптимизировать процессы уплотнения, исключив в значительной степени рекристаллизационные явления . Электроразрядное спекание, осуществляемое пропусканием тока через спекаемый образец, и горячая обработка давлением порошковых объектов (например, ковка или экструзия) могут также способствовать торможению рекристаллизации и использоваться для получения наноматериалов. Спекание керамических наноматериалов в условиях микроволнового нагрева, приводящего к равномерному распределению температуры по сечению образцов, также способствует сохранению наноструктуры. Однако размер кристаллитов в перечисленных вариантах консолидации обычно на уровне верхнего предела размера зерен наноструктуры, т.е. обычно не ниже 50-100 нм.

2.2.2 Интенсивная пластическая деформация

Формирование нано структуры массивньтх металлических образцов может быть осуществлено методом интенсивной деформации. За счет больших деформаций, достигаемых кручением при квазигидростатическом высоком давлении, равноканальным угловым прессованием и использованием других способов, образуется фрагментированная и разориентированная структура.

На Рисунок 4 показаны две схемы интенсивной пластической деформации – кручение под высоким давлением и равноканальное угловое прессование. В случае схемыa дискообразный образец помещают в матрицу и сжимают вращающимся пуансоном. В физике и технике высоких давлений эта схема развивает известные идеи наковален Бриджмена. Квазигидростатическая деформация при высоких давлениях и деформация сдвигом приводят к формировани неравновесных наноструктур с большеугловыми межзеренными границами. В случае схемы б , принципиальные основы которой были разработаны В. М. Сегалом (Минск), образец деформируется по схеме простого сдвига и существует возможность повторного деформирования с использованием различных маршрутов. В начале 1990-х гг. Р. З. Валиев с соавт. использовали обе схемы для получения наноматериалов, детально исследовав закономерности получения в связи с особенностями структуры и свойств.

1) полная кристаллизация непосредственно в процессе закалки из расплава и образование одно- или многофазной как обычной поликристаллической структуры, так и наноструктуры;

2) кристаллизация в процессе закалки из расплава протекает не полностью и образуется аморфно-кристаллическая структура;

3) закалка из расплава приводит к образованию аморфного состояния, которое трансформируется в наноструктуру только при последующей термической обработке.

Для переработки аморфньих порошков, получаемых, например, газовым распылением жидких расплавов, используют приемы горячей обработки давлением, как это было продемонстрировано японскими исследователями на примере объемных заготовок высокопрочного сплава Al – Y – Ni – Co.

2.2.4 Технология пленок и покрытий

Эти методы весьма универсальны в отношении состава наноматериалов, которые могут быть изготовлены практически в беспористом состоянии в широком диапазоне размеров зерен, начиная от 1-2 нм и более. Единственное ограничение – это толщина пленок и покрытий – от нескольких долей микрона до сотен микрон. Используются как физические методы осаждения, так и химические методы, а так же электроосаждение и некоторые другие приемы. Разделение методов осажаения на физические и химические условно, поскольку, например, многие физические приемы включают химические реакции, а химические методы стимулируются физическими воздействиями.

В Таблица 2 приведены основные методы получения наноструктурных пленок на основе тугоплавких соединений (карбидов, нитридов, боридов) . Возбуждение дугового разряда в азотной или углеродсодержащей атмосфере – один из наиболее распространенных вариантов технологии ионного осаждения; в качестве источника ионов металлов используют металлические катоды. Электродуговое испарение весьма производительно, но сопровождается образованием металлической капельной фазы, освобождение от которой требует специальных конструктивных мер. Этого недостатка лишен магнетронный вариант ионно-плазменного осаждения, в котором мишень (катод) распыляется за счет бомбардировки ионами плазмы газового разряда низкого давления, которая формируется между катодом и анодом. Поперечное постоянное магнитное поле локализует плазму у распыляемой поверхности мишени и повышает эффективность распыления.

Специалисты по генной инженерии разработали методы расщепления и сшивания нитей ДНК «липкими» комплементарными концами, а также приемы «подвешивания» нанопроволочек к «липким концам». Слипание ДНК таким образом может приводить к соединению нанопроволочек. Участки ДНК в таких структурах обычно имеют длину 2-3 витков двойной спирали (примерно 7-10 нм) . Такая алгоритмическая сборка представляется весьма перспективным направлением в создании новых наноматериалов, структура и свойства которых могут программироваться в одном, двух или трех измерениях. Закономерности ДНК-нанотехнологии исследуют весьма интенсивно, поскольку высокая степень «межмолекулярного распознавания» позволяет надеяться на создание путем самосборки разнообразных структур, функциональные свойства которых могут быть предсказаны.

Супрамолекулярный синтез предполагает сборку молекулярных компонентов, направляемую межмолекулярными нековалентными силами. Супрамолекулярная самосборка представляет спонтанное соединение нескольких компонентов (рецепторов и субстратов), в результате чего на основе так называемого «молекулярного распознавания» происходит самопроизвольное образование новых структур (например, изолированных олигомерных сверхмолекул или крупных полимерных агрегатов). Такие органические соединения, как ротаксаны, в которых кольцевая молекула надета на ось с «заглушками», и катенаны, в которых кольцевые молекулы продеты одна в другую, были получены на основе спонтанного нанизывания донорно-акцепторных партнеров, а также за счет вспомогательного образования водородных связей.

На основе металлоорганических строительных блоков путем самосборки могут быть также получены разнообразные неорганические архитектуры (например, цепи сурьмы и теллура, различные каркасы металлов, сплавов и соединений и т.д.). Объекты супрамолекулярной инженерии становятся все более разнообразными.

2.3.2 Нанопористые материалы (молекулярные сита)

Это цеолитные и цеолитоподобные, а также углеродные и полимерные наноструктуры с пространственно-регулярной системой каналов и полостей, которые предназначены как для диффузионного раз деления газовых смесей, так и для размещения и стабилизации наночастиц функционального назначения (подложки для катализа, эмиттеры, датчики и др.). Технологические приемы получения нанопористых материалов весьма разнообразны: гидротермальный синтез, золь-гель-процессы, электрохимические методы, обработка хлором карбидных материалов и др. Различные сотовые структуры создаются комбинацией приемов стандартной литографии (нанесение рисунка будущей решетки), щелочного травления, анодного растворения, окисления-восстановления и т. д.

При обработке полимеров, диэлектриков и полупроводников высокоэнергетическими ионами образуются так называемые ионные треки нанометрового размера, которые могут быть использованы для создания нанофильтров, наношаблонов и т.д. .

Применительно к нанокомпозитным молекулярным ситам цеолитного типа различают, по крайней мере, два метода получения таких матричных структур: кристаллизация пористого материала из геля, где присутствуют наночастицьи будущего композита, и синтез наночастиц i n siti из прекурсоров, предварительно введенных в цеолиты.

2.3.3 Трубчатые материалы

При изучении осадков, образующихся при испарении графита в условиях дугового разряда, было обнаружено, что полосы атомных сеток графита (графенов) могут свертываться в бесшовные трубки. Внутренний диаметр трубок колеблется от долей нанометра до нескольких нанометров, а их длина – в интервале 5-50 мкм.


1 - графитовый анод; 2 - графитовый катод; 3 - токовводы; 4 - изолятор; 5 - держатели; 6 - охлаждаемый реактор; 7 - медный жгут; 8 - электродвигатель; 9 - вакуумметр; 10 - фильтр; 11-13 - вакуумные и газовые подводы

На Рисунок 9 показана схема лабораторной установки для получения углеродных нанотрубок. Графитовый электрод 1 распыляется в гелиевой плазме дугового разряда; продукты распыления в виде трубок, фуллеренов, копоти и т.п. осаждаются на поверхности катода 2 , а также на боковых стенках охлаждаемого реактора. Наибольший выход трубок наблюдается при давлении гелия около 500-600 кПа; параметры дугового режима, геометрические размеры электродов, длительность процесса, размеры реакционного пространства так же оказывают значительное влияние. После синтеза концы трубок обычно закрыты своеобразными «шапочками» (полусферическими или коническими). Важным элементом технологии нанотрубок является их очистка и раскрытие концов, что выполняется различными методами (окисление, обработка кислотами, обработка ультразвуком и т.д.).

Для получения нанотрубок используют также лазерное распыление графита и пиролиз углеводородов с участием катализаторов (металлы группы железа и др.). Последний метод считается одним из самых перспективных в плане повышения производительности и расширения структурного разнообразия трубок.

Заполнение внутренних полостей нанотрубок различными металлами и соединениями может осуществляться либо в процессе синтеза, либо после очистки. В первом случае добавки могут вводиться в графитовый электрод; второй метод более универсален и может реализовываться многими приемами («направленное» заполнение из расплавов, растворов, из газовой фазы и др.).

Вскоре после открытия углеродньтх нанотрубок было обнаружено, что свойством сворачивания обладает не только графит, но и многие другие соединения – нитриды и карбиды бора, халькогениды, оксиды, галогениды и различные тройные соединения. В последнее время были получены и металлические трубки (Аu). Самоформирующиеся трехмерные наноструктуры типа нанотрубок на основе полупроводников и других веществ могут быть получены в результате самосворачивания тонких слоев в трубки-свитки . В данном случае используется различие в остаточных напряжениях, возникающих в эпитаксиальном слое (растягивающие напряжения) и в подложке (сжимающие напряжения).

2.3.4 Полимерные материалы

С помощью нанопечатной литографии удается изготавливать полимерные шаблоны (темплаты) с отверстиями диаметром 10 нм и глубиной 60 нм. Отверстия образуют квадратную решетку с шагом 40 нм и предназначены для размещения нанообъектов типа углеродных нанотрубок, катализаторов и т.д. Такие шаблоны создаются путем деформации специальными штампами с последующим реактивным ионным вытравливанием полимерных остатков из отверстий.

Описаны также приемы литографически индуцированной самосборки наноструктур. В этом случае решетка формируется за счет образующейся матрицы столбов, растущих из полимерного расплава, находящегося на кремниевой поддожке. Отмечается, что этот процесс может быть применен и к другим материалам (полупроводникам, металлам и биоматериалам), что важно для создания запоминающих устройств различных типов .


Различные отрасли промышленности и сферы человеческой деятельности являются потребителями наноматериалов.

В промышленности уже давно эффективно используются полировальные пасты и противоизносные препараты на основе наночастиц. Последние (например, на основе бронзы) вводят в зоны трения машин и различных механизмов, что значительно повышает ресурс их работы и улучшает многие технико-экономические показатели (например, снижается в 3-6 раз содержание СО в выхлопных газах). На поверхности пар трения в процессе эксплуатации формируется противоизносный слой, образующийся при взаимодействии продуктов износа и вводимых в смазку наночастиц. Препараты типа РиМЕТ в промышленном масштабе производятся в России научно-производственным предприятием «Высокодисперсные металлические порошки» (Екатеринбург) .

Добавки частиц и волокон в полимерные матрицы – хорошо известный прием повышения физико-механических свойств полимеров, а также их огнестойкости. Замена многих металлических материалов на полимеры, армированные наночастицами, приводит в автомобилестроении к уменьшению массы автомобиля, снижению потребления бензина и вредных выбросов .

Пористые наноструктуры используются для диффузионного разделения газовых смесей (например, изотопов и других сложных газов, отличающихся молекулярной массой). Размер пор («окон в обычных цеолитах изменяется в интервале 0,4-1,5 нм и зависит от числа атомов кисло рода в циклическях структурах, образующих цеолит. Следует иметь в виду, что поверхность многих пористых наноструктур сама по себе обладает каталитическями свойствами. Высокая селективность в различных процессах разделения возрастает за счет каталитических явлений, что, например, используется при изомеризации органических соединений типа ксилолов.

Значительное внимание уделяется также изучению каталитических, сорбируюших и фильтрующих свойств углеродных нанонтрубок. Отмечены, например, их высокие сорбирующие характеристики применительно к очистке отходящих газов от трудноразрушаемых канцерогенных диоксинов . Заманчивы также перспективы использования фуллеренов и углеродных нанотрубок для водородсорбирующих целей . Кроме этого, в связи с размерными особенностями (большое отношение длины к диаметру и малые размеры), возможностью изменения проводимости в широких пределах и химической устойчивостью углеродные нанотрубки рассматриваются как принципиально новый материал для электронных приборов нового поколения, в том числе и ультраминиатюрных [ , ].

Для наноструктурных объектов характерны необычные оптические свойства, что используется в декоративных целях. Поверхность куполов московского храма Христа Спасителя состоит из титановых пластин, покрытых нитридом титана . В зависимости от отклонений от стехиометрии и наличия примесей углерода и кислорода цвет пленок ТiN x может изменяться от серого до синего, что используют при нанесении покрытий на посуду.

Устройства для записи информации (головки, носители, диски и т.д.) – важная область применения магнитных наноматериалов. Легкость воспроизведения, устойчивость при хранении, высокая плотность записи, невысокая стоимость – вот лишь некоторые из предъявляемых требований к этим системам. Гигантский магниторезестивный эффект, проявляющийся в многослойных магнитно/немагнитных пленках, оказался очень полезным для эффективной записи информации. Этот эффект используется при регистрации очень слабых магнитных полей в считывающих головках дисководов магнитных дисков, что позволило значительно повысить плотность записи информации и увеличить скорость считывания . В течение 10 лет после открытия этого эффекта фирма IВМ довела в 1998 г. выпуск жестких магнитных дисков ЭВМ с головками, основанными на этом явлении, до 34 млрд. долл. (в стоимостном выражении), практически вытеснив старые технологии . Плотность хранения информации ежегодно удваивается.

Задача увеличения продолжительности и качества жизни мотивирует интенсивные разработки в области биоматериалов вообще и нанобиоматериалов в частности . Основные области применения наноматериалов в медидине, биологии и сельском хозяйстве весьма разнообразны:

Хирургический и стоматологический инструментарий;

Диагностика, наномоторы и наносенсоры;

Фармакология, лекарственные препараты и методы их доставки;

Искусственные органы и ткани;

Стимулирующие добавки, удобрения и т.д.;

Защита от биологического и радиологического оружия.


Мир стоит на пороге новой промышленной революции, которая связана, прежде всего, с развитием нанотехнологий. По оценке ведущих экспертов, она сравнима по масштабам своего воздействия на общество с революцией, которая была вызвана изобретением в XX веке транзистора, антибиотиков и информационных технологий, вместе взятых . Сегодня объем мирового рынка нанотехнологической продукции измеряется в миллиардах долларов (пока этот рынок составляют главным образом новые материалы и порошки, улучшающие свойства материалов), а к 2015 году, по прогнозам западных специалистов, он превысит $1 трлн . В недалеком будущем экономическое, военное, социальное и политическое положение развитых стран будет определяться уровнем развития национальной наноиндустрии.

По словам директора Института нанотехнологий (учрежден Международным фондом конверсии) Михаила Ананяна , нанотехнологии не будут развиваться также эволюционно, как, например, электроника: сначала радиоприемник, потом телевизор, потом компьютер. Сейчас активно идет моделирование различных наноприборов, приспособлений и т. д. И как только будет создана технология, произойдет резкий скачок – просто появится новая цивилизация, резко снизится материало- и энергоемкость, возникнет гораздо более эффективная экономика.

Но не все так просто, ведь, как я уже упоминала, реализация нанотехнической революции требует усилий не только и не столько со стороны ученых (разработки идут полным ходом), требуется усилия со стороны государственной власти – ни один другой инвестор не потянет такой «крупномасштабный проект». Следует на законодательном уровне принципиально изменить сам подход к формированию национальной программы развития нанотехнологий. Тем более, что наша страна располагает немалым опытом реализации крупномасштабных проектов.

Вспомним, что в нашей истории были три проекта, которые повлекли за собой качественные изменения практически во всех отраслях промышленности. Я имею в виду ГОЭЛРО, атомный проект, освоение космоса. Развитие нанотехнологий относится к проектам именно такого, общегосударственного уровня, поскольку их применение повлечет за собой качественные изменения во всех, без исключения, отраслях экономики. В декабре Правительство приняло решение о формировании национальной программы развития нанотехнологий, недавно Президент России в своем ежегодном послании Федеральному Собранию обозначил, что Россия должна стать лидером в области нанотехнологий. Остается только надеяться, что это начинание (лучше поздно, чем никогда, - Россия остается единственной страной, называющей себя развитой, которая не имеет своей программы в этой области) выльется в реальный, дествующий проект и не превратится в очередную кампанейщину.


1. Нанотехнология для всех/ Рыбалкина М. – М., 2005. – 434 с.

2. Введение в нанотехнологию/ Кобаяси Н. – Пер. с японского – М.: БИНОМ. Лаборатория знаний, 2007. – 134 с.:ил.

3. Введение в нанотехнологию/ Меньшутина Н.В. – Калуга: Издательство научной литературы Бочкаревой Н.Ф., 2006. – 132 с.

4. Порошковое материаловедение/ Андриевский Р.А. – М.: Металлургия, 1991. – 205 с.

5. Левитационный метод получения ультрадисперсных порошков металлов /Ген М.Я., Миллер А.В. Поверхность. Физика, химия, механика. – 1983. №2., С. 150-154.

6. Троицкий В.Н Получение ультрадисперсных порошков в плазме СВЧ-разрядв// СВЧ-генераторы плазмы: физика, техника, применение/ Батенин В.М. и др. – М.: Энергоатомиздат, 1988. – С. 175-221.

7. Applications of ultrasound to materials chemistry/ Suslick K.S., Price G.J. Annual Review Materials Science. – 1999. V.2., P. 295-326.

8. Нанопорошки, получаемые с использованием импульсных методов нагрева мишеней/ Котов Ю.А. Перспективные материалы. – 2003. №4., С. 79-81.

9. Ультразвуковое прессование керамических ультрадисперсных порошков/ Хасанов О.Л. Известия вузов. Физика. – 2000. №5., С. 121-127.

10. Fabrication of bulk nanostructured materials from metallic nanopowders: structure and mechanical behaviour/ Champion Y., Guerin-Mailly S., Bonnentien J.-L. Scripta Materialia. – 2001. V.44. N8/9., P. 1609-1613.

11. Фiзико-хiмiчна кiнетика в наноструктурних системах/ Скороход В.В., Уварова И.В., Рагуля А.В. – Киiв: Академперодiика, 2001. – 180 с.

12. Наноструктурные материалы, полученные интенсивной пластической деформацией/ Валиев Р.З., Александров И.В. – М.: Логос, 2000. – 272 с.

13. Gleser A.M. Melt quenched nanocristals// Nanostructured Materials: Science and Technology/ Eds G.-M. , Noskova N.I. – Dordrecht: Kluwer Academic Publishers, 1998. – P. 163-182.

14. Nanocrystalline aluminium bulk alloys with a high strength of 1420 MPa produced by the consolidation of amorbhous powders/ Kawamura Y., Mano H., Inoue A. Scripta Materialia. – 2001. V.44. N8/9., P. 1599-1604.

15. Синтез и свойства пленок фаз внедрения/ Андриевский Р.А. Успехи химии. – 1977. Т.66. №1., С. 57-77.

16. Microstrukture development of Al2O3 – 13wt % TiO2 plasma sprayed coatings derived from nanocrystalline powders/ Goberman D., Sohn Y.H., et fa. Acta Materialia. – 2002. V. 50., P. 1141-1151.

17. Наночастицы металлов в полимерах/ Помогайло А.Д., Розенберг А.С., Уфлянд И.Е. – М.: Химия, 2000. – 672 с.

18. DNA nanotechnology/ Seeman N. Materials Today. – 2003. N1., P. 24-29.

19. Ионно-трековая нанотехнология/ Реутов В.Ф., Дмитриев С.Н. Российский химический журнал. – 2002. Т.46. №5., С. 74-80.

20. A new family of mesoporous molecular sieves prepared with liquid crystal templates/ Beck J.S. et al. Journal of American Chemical Society. – 1992. V.114. N27., P. 1609-1613.

21. Трехмерные самоформирующиеся наноструктуры на основе свободных напряженных гетеропленок/ Принц В.Я. Известия вузов. Физика. – 2003. Т.46. №4., С. 35-43.

22. Нанотехнология в ближайшем десятилетии: Прогноз направления исследований/ Под ред. Рокко М.К., Уильямса Р.С., Аливисатора П./ Пер. с англ. под ред. Андриевского Р.А. – М.: Мир, 2002. – 292 с.

23. Новые защитные покрытия/ Лисовских В.Г. Помазкин А.М. - http://www.coldzinc.ru/topic/3.shtml

24. Химия и применение углеродных нанотрубок/ Раков Э.Г. Успехи химии. – 2001. Т.70. №10., С. 934-973.

25. Hydrogen Storage/ Materials Research Society Bulletin. – 2002. V.27. N9., P. 675-716.

26. Нанохимия – прямой путь к высоким технологиям/ Бучаченко А.Л. Успехи химии. – 2003. Т.72. №5., С. 419-437.

27. Углеродные нанотрубки и их эмиссионные свойства/ Елецкий А.В. Успехи физических наук. – 2002. Т.172. №4., С. 401-438.

28. Строительство храмов. Из истории Храма Христа Спасителя. - http://www.morion.biz/art.php?rids=8&ids=1

29. Молекулярная электроника на пороге нового тысячелетия/ Минкин В.И. Российский химический журнал. – 2000. Т.44. №6., С. 3-13.

30. Дорога в будущее/ Билл Гейтс –

http://lib.web-malina.com/getbook.php?bid=1477

31. Use of high surface nanofibrous materials in medicine/ Mikhalovsky S.V. – Dordrecht: Kluwer Academic Publishers, 2004. – P. 330.

32. От нанотехнологий – к инновационной промышленности/ Мазуренко С. Технополис XXI. – 2005. №5 (http://www.technopolis21.ru/76)

33. Бойцы невидимого фронта/


Нанотехнология для всех/ Рыбалкина М. – М., 2005. – 434 с.

Введение в нанотехнологию/ Кобаяси Н. – Пер. с японского – М.: БИНОМ. Лаборатория знаний, 2007. – 134 с.:ил.

Ультразвуковое прессование керамических ультрадисперсных порошков/ Хасанов О.Л. Известия вузов. Физика. – 2000. №5., С. 121-127.

Fabrication of bulk nanostructured materials from metallic nanopowders: structure and mechanical behaviour/ Champion Y., Guerin-Mailly S., Bonnentien J.-L. Scripta Materialia. – 2001. V.44. N8/9., P. 1609-1613.

Фiзико-хiмiчна кiнетика в наноструктурних системах/ Скороход В.В., Уварова И.В., Рагуля А.В. – Киiв: Академперодiика, 2001. – 180 с.

Наноструктурные материалы, полученные интенсивной пластической деформацией/ Валиев Р.З., Александров И.В. – М.: Логос, 2000. – 272 с.

Gleser A.M. Melt quenched nanocristals// Nanostructured Materials: Science and Technology/ Eds G.-M. , Noskova N.I. – Dordrecht: Kluwer Academic Publishers, 1998. – P. 163-182.

Nanocrystalline aluminium bulk alloys with a high strength of 1420 MPa produced by the consolidation of amorbhous powders/ Kawamura Y., Mano H., Inoue A. Scripta Materialia. – 2001. V.44. N8/9., P. 1599-1604.

Синтез и свойства пленок фаз внедрения/ Андриевский Р.А. Успехи химии. – 1977. Т.66. №1., С. 57-77.

Microstrukture development of Al2O3 – 13wt % TiO2 plasma sprayed coatings derived from nanocrystalline powders/ Goberman D., Sohn Y.H., et fa. Acta Materialia. – 2002. V. 50., P. 1141-1151.

Наночастицы металлов в полимерах/ Помогайло А.Д., Розенберг А.С., Уфлянд И.Е. – М.: Химия, 2000. – 672 с.

DNA nanotechnology/ Seeman N. Materials Today. – 2003. N1., P. 24-29.

Ионно-трековая нанотехнология/ Реутов В.Ф., Дмитриев С.Н. Российский химический журнал. – 2002. Т.46. №5., С. 74-80.

A new family of mesoporous molecular sieves prepared with liquid crystal templates/ Beck J.S. et al. Journal of American Chemical Society. – 1992. V.114. N27., P. 1609-1613.

Трехмерные самоформирующиеся наноструктуры на основе свободных напряженных гетеропленок/ Принц В.Я. Известия вузов. Физика. – 2003. Т.46. №4., С. 35-43.

Нанотехнология в ближайшем десятилетии: Прогноз направления исследований/ Под ред. Рокко М.К., Уильямса Р.С., Аливисатора П./ Пер. с англ. под ред. Андриевского Р.А. – М.: Мир, 2002. – 292 с.

Новые защитные покрытия/ Лисовских В.Г. Помазкин А.М. - http://www.coldzinc.ru/topic/3.shtml

От нанотехнологий – к инновационной промышленности/ Мазуренко С. Технополис XXI. – 2005. №5 (http://www.technopolis21.ru/76)

Бойцы невидимого фронта/

http://www.businesspress.ru/newspaper/article_mId_37_aId_130917.html

Физические методы:
Механические: измельчение различными способами,
механосинтез, механическое легирование
процессы испарения (конденсации), фазовые переходы,
газофазный синтез нанопорошков с контролируемой
температурой и атмосферой; способ электрического взрыва
проволок
Химические методы получения:
осаждение, золь-гель метод, термическое разложение или
пиролиз, газофазные химические реакции, химическое
восстановление, гидролиз, электроосаждение, фото-и
радиационно-химическое восстановление, криохимический
синтез.
Биологические - внутриклеточный и внеклеточный методы
синтеза.
Классификация условная, т.к. в реальных методах получения наноструктур
используются различные процессы. Химические процессы, часто применяются вместе с
физическими и механическими.
3

Процессы получения нанообъектов «сверху - вниз» и «снизу - вверх»

«сверху-вниз» (top-down)
заключается в уменьшении
размеров объектов до нановеличин
«снизу-вверх» (bottom-up)
заключается создании изделий
путем их сборки из отдельных
атомов или молекул, а также
элементарных атомномолекулярных блоков, структурных
фрагментов биологических клеток и
т. п.
Рис. Два подхода к получению наночастиц:
вверху – нисходящий (физический), внизу –
восходящий (химический).
(Из книги Г.Б.Сергеева «Нанохимия»)
4

Примеры наиболее широко применяемых методов синтеза
наночастиц и наноматериалов:
1 - плазмохимический метод,
2 - электрический взрыв проводников,
3 - метод испарения и конденсации,
4 - левитационно-струйный метод,
5 - метод газофазных реакций,
6 - разложение нестабильных соединений,
7 - метод криохимического синтеза,
8 - золь-гель метод,
9 - метод осаждения из растворов,
10 - гидро- и сольвотермальный синтез,
11 - самораспространяющийся высокотемпературный синтез,
12 – механосинтез,
13 - электролитический метод, 14
14 - микроэмульсионный метод,
15 - жидкофазное восстановление,
16 - ударно-волновой (или детонационный) синтез,
17 - кавитационно-гидродинамический, ультразвуковой, вибрационный методы,
18 - метод получения нанопорошков диспергированием объемных материалов путем
фазовых превращением в твердом состоянии,
19 - методы воздействия различными излучениями,
20 –технология конверсионного распыления.
5

Порошковая
технология
Компактование порошков (метод Глейтера)
Электроразрядное спекание
Горячая обработка давлением
Интенсивная
пластическая
деформация
Равноканальное угловое прессование
Деформация кручением
Обработка давлением многослойных композитов
Контролируемая кристаллизация из аморфного состояния
Технологии пленок и покрытий
6

Методы получения пленок и покрытий

Термическое
испарение
Физические
Активированное реактивное испарение
Электронно-лучевой нагрев
Лазерная обработка (лазерная эрозия)
Ионное осаждение
Ионно-дуговое распыление
Магнетронное распыление
Ионно-лучевая обработка, имплантация
Осаждение из
газовой фазы
Плазмосопровождаемые
и
плазмоактивируемые CDV-процессы
Электронный циклотронный резонанс
Термическое
разложение
Химические
Газообразные
прекурсоры
и
конденсированные
7

Измельчение
Измельчение - это типичный пример технологий типа «сверху - вниз».
Измельчение в мельницах, дезинтеграторах, аттриторах и других
диспергирующих установках происходит за счет раздавливания, раскалывания,
разрезания, истирания, распиливания, удара или в результате комбинации этих
действий. Для провоцирования разрушения измельчение часто проводится в
условиях низких температур.
Обеспечивая, в принципе, приемлемую производительность, измельчение, однако, не
приводит к получению очень тонких порошков, поскольку существует некоторый предел
измельчения, отвечающий достижению своеобразного равновесия между процессом
разрушения частиц и их агломерацией. Даже при измельчении хрупких материалов размер
получаемых частиц обычно не ниже примерно 100 нм; частицы состоят из кристаллитов
размером не менее 10--20 нм. Следует считаться и с тем, что в процессе измельчения
практически всегда происходит загрязнение продукта материалом шаров и футеровки, а
также кислородом.
8

ФИЗИЧЕСКИЕ МЕТОДЫ ПОЛУЧЕНИЯ НАНОЧАСТИЦ

BaTiO3(5-25 нм) НЧ Борида железа
Механическое диспергирование
осуществляется на основе:
а) планетарного принципа (вращение шаров
в объеме вещества)
б) вибрационного принципа (за счет
вибрации корпуса и движения шаров)
Суть: силовой контакт с инородным телом
или между самими частицами
Диспергирование может осуществляться
взрывом, под действием ультразвука,
электрического поля, самопроизвольно
9

ФИЗИЧЕСКИЕ МЕТОДЫ ПОЛУЧЕНИЯ НАНОЧАСТИЦ

Электрический взрыв
При пропускании через относительно тонкие проволочки импульсов тока
плотностью 104-106 А/мм2 происходит взрывное испарение металла с
конденсацией его паров в виде частиц различной дисперсности. В зависимости
от окружающей среды может происходить образование металлических частиц
(инертные среды) или оксидных (нитридных) порошков (окислительные или
азотные среды). Требуемый размер частиц и производительность процесса
регулируются параметрами разрядного контура и диаметром используемой
проволоки. Форма наночастиц преимущественно сферическая.
Нанопорошок γ-δ-Al2O3,
полученный методом
электровзрыва
10

ФИЗИЧЕСКИЕ МЕТОДЫ ПОЛУЧЕНИЯ НАНОЧАСТИЦ

Левитационо-струйный метод (flowing gas evaporation technique)
Испарение металла в потоке инертного газа, например из непрерывно
подпитываемой и разогреваемой высокочастотным электромагнитным полем
жидкой металлической капли. С увеличением скорости потока газа средний
размер частиц уменьшается от 500 до 10 нм, при этом распределение частиц по
размеру сужается.
Были получены НП марганца с размером частиц (ромбической формы) от 20 до
300 нм, сурьмы с аморфной структурой и средним размером частиц 20 нм и
другие НП.
11

ФИЗИЧЕСКИЕ МЕТОДЫ ПОЛУЧЕНИЯ НАНОЧАСТИЦ

Конденсационный метод
Это один из основных методов получения наночастиц металлов. Процесс основан
на сочетании испарения металла в поток инертного газа с последующей
конденсацией в камере, находящейся при определенной температуре. Этапы:
1) Гомогенное или гетерогенное зарождение зародышей.
2) Испарение металла путем низкотемпературной плазмы, молекулярных пучков
и газового испарения, катодного распыления, ударной волны, электровзрыва,
лазерной электродисперсии, сверхзвуковой струи, различных методов механического
диспергирования.
3) Пары вещества разбавляют большим избытком потока инертного газа.
Обычно используют аргон или ксенон. Полученную парогазовую смесь направляют на
поверхность образца (подложку), охлажденную до низких температур (обычно 4-77
К).
В настоящее время метод конденсации модифицировали и для получения
керамических нанопорошков. Испарителем является трубчатый реактор, в котором
металлоорганический прекурсор смешивается с несущим инертным газом и
разлагается. Образующийся непрерывный поток кластеров или наночастиц попадает
из реактора в рабочую камеру и конденсируется на холодном вращающемся
цилиндре.
Прекурсор - химическое вещество, исходный компонент или участник промежуточных
реакций при синтезе какого-либо вещества.
12

ФИЗИЧЕСКИЕ МЕТОДЫ ПОЛУЧЕНИЯ НАНОЧАСТИЦ (Конденсационный метод)

1 стадия конденсационного процесса - нагрев вещества и
образование потока газа
2 стадия – фазовый переход
3 стадия - конденсация до образования НЧ
13

Метод эпитаксии
Эпитаксия (эпи + греч. τάχις – расположение) - процесс
выращивания тонких монокристаллических слоев (базовых
полупроводниковых структур) на монокристаллических
подложках. Растущий тонкий слой часто наследует тип
кристаллической решетки подложки
Выращивание эпитаксиального слоя того же состава и
структуры – гомоэпитаксия, автоэпитаксия
Выращивание эпитаксиального слоя другого состава и
структуры – гетероэпитаксия. Определяется условием
сопряжения кристаллических решеток наносимого слоя и
подложки
Образование квантовых точек
Механизмы самоорганизованного роста тонкого
слоя на поверхности монокристалла:
а - двумерный (послойный),
б - трехмерный (островковый),
в - промежуточный механизм роста (механизм
Странского и Крастанова) (Карпович И.А. Квантовая
инженерия. Самоорганизованные квантовые точки //
СОЖ. 2001, № 7. С. 102-108.)
14

Метод литографии
Литография (от греч. Lithos – камень, и grapho – пишу) – старейший способ
плоской печати, в котором печатная форма изготавливалась на камне (на известняке).
В процессе роста в полупроводник AlGaAs вводят примесные атомы.
Электроны с этих атомов уходят в полупроводник GaAs, то есть в область
с меньшей энергией. Но не слишком далеко, так как притягиваются к
покину-тым ими атомам примеси, получившим положительный заряд.
Практически все электроны сосредоточиваются у самой гетерограницы
со стороны GaAs и образуют двумерный газ.
На поверхность AlGaAs наносят ряд масок (фотошаблон), каждая из
которых имеет форму круга. После этого производится глубокое
травление, при котором удаляется весь слой AlGaAs и частично слой
GaAs‚ в результате электроны оказываются запертыми в образовавшихся
цилиндрах.
Квантовые точки, сформированные в
двумерном электронном газе на границе
двух полупроводников.
15

МЕТОДЫ ПОЛУЧЕНИЯ КОНСОЛИДИРОВАННЫХ НАНОМАТЕРИАЛОВ

Компактование порошков
Полученные конденсационным методом наночастицы
осаждаются на поверхности, специальным скребком снимается и
собирается в коллектор. После откачки инертного газа в вакууме
проводится предварительное (под давлением примерно 1 ГПа) и
окончательное (под давлением до 10 ГПа) прессование
нанокристаллического порошка. В результате получают пластинки
диаметром 5-15 и толщиной 0.2- 3.0 мм с плотностью 70-90 % от
теоретической соответствующего материала (до 97 % для
нанокристаллических металлов и до 85 % для нанокерамики).
В целом для получения компактных нанокристаллических
материалов, в особенности керамических, перспективно
прессование с последующим высокотемпературным спеканием
нанопорошков. При реализации этого способа необходимо избегать
укрупнения зерен на стадии спекания спрессованных образцов. Это
возможно при высокой плотности прессовок, когда процессы
спекания протекают достаточно быстро, и при относительно низкой
температуре.
16

МЕТОДЫ ПОЛУЧЕНИЯ КОНСОЛИДИРОВАННЫХ НАНОМАТЕРИАЛОВ

Интенсивная пластическая деформация
Весьма привлекательным способом создания компактных
сверхмелкозернистых материалов со средним размером зерен 100
нм является интенсивная пластическая деформация. В основе
этого метода получения наноматериалов лежит формирование за
счет больших деформации сильно фрагментированной и
разориентированной структуры, сохраняющей остаточные признаки
рекристаллизованного аморфного состояния. Для достижения
больших деформаций материала применяются различные методы:
кручение под квазигидростатическим давлением, равноканальное
угловое прессование, прокатка, всесторонняя ковка. Сущность их
заключается в многократной интенсивной пластической
деформации сдвига обрабатываемых материалов. Использование
интенсивной пластической деформации позволяет наряду с
уменьшением среднего размера зерен изготовить массивные
образцы с практически беспористой структурой материала, чего не
удастся достичь компактиро-ванием высокоднспсрсных порошков.
17

МЕТОДЫ ПОЛУЧЕНИЯ КОНСОЛИДИРОВАННЫХ НАНОМАТЕРИАЛОВ

Методы лазерного испарения (лазерная эрозия)
Действие механизма данного метода заключается в следующем:
приповерхностный слой металла в процессе воздействия лазерного
излучения умеренной плотности мощности разогревается до температур,
больших температуры кипения, и образующиеся парогазовые пузырьки,
лопаясь, поставляют частицы жидкой фазы в эрозионный факел металла.
Согласно теоретическим оценкам, проведенным для сред, которые не
имеют микродефектов, а также сред, не содержащих газы, процесс
объемного парообразования имеет существенное значение при плотностях
мощности больших 108 Вт/см2. В реальных условиях процесс объемного
парообразования начинается при гораздо меньших плотностях мощности.
При этом возникающие частицы двигаются по нормали к поверхности
мишени, увлекаемые парами материала мишени. Если на пути подобного
пучка частиц поместить улавливающую среду (жидкость, подложка,
полимерная матрица) - возможно формирование субстратов, содержащих
наночастицы материала мишени.
18

МЕТОДЫ ПОЛУЧЕНИЯ КОНСОЛИДИРОВАННЫХ НАНОМАТЕРИАЛОВ

Контролируемая кристаллизация аморфных материалов
По этому методу нанокристаллическая структура создается в
аморфном сплаве путем его кристаллизации в процессах спекания
аморфных порошков, а также при горячем или теплом прессовании или
экструзии. Размер кристаллов, возникающих внутри аморфного
материала, регулируется температурой процесса. Метод перспективен
для материалов самого различного назначения (магнитных,
жаропрочных, износостойких, коррозионностойких и т. д.) и на самых
разных основах (железо, никель, кобальт, алюминий). Недостаток
метода состоит в том, что получение нанокристаллического состояния
здесь менее вероятно, чем микрокристаллического.
19

МЕТОДЫ ПОЛУЧЕНИЯ КОНСОЛИДИРОВАННЫХ НАНОМАТЕРИАЛОВ

Осаждение на подложку
Осаждением на холодную или подогретую поверхность подложки
получают пленки и покрытия, т. е. непрерывные слои нанокристаллического
материала. В этом способе, в отличие от газофазного синтеза, образование
наночастиц происходит непосредственно на поверхности подложки, а не в
объеме инертного газа вблизи охлажденной стенки. Благодаря
формированию компактного слои нанокристаллического материала
отпадает необходимость прессования.
Осаждение на подложку может происходить из паров, плазмы или
коллоидного раствора. При осаждении из паров металл испаряется в
вакууме, в кислород- или азотсодержащей атмосфере и пары металла или
образовавшегося соединения (оксида, нитрида) конденсируются на
подложке. Размер кристаллитов в пленке можно регулировать изменением
скорости испарения и температуры подложки. Чаще всею этим способом
получают нанокристаллические пленки металлов. При осаждении из
плазмы для поддержания электрического разряда применяется инертный
газ.
20

МЕТОДЫ ПОЛУЧЕНИЯ КОНСОЛИДИРОВАННЫХ НАНОМАТЕРИАЛОВ

Технология получения пленок Ленгмюра–Блоджетт,
Это технология получения моно- и мультимолекулярных пленок путем
переноса на поверхность твердой подложки пленок Ленгмюра
(монослоев амфифильных соединений - ПАВ, образующихся на
поверхности жидкости)
21

МЕТОДЫ ПОЛУЧЕНИЯ КОНСОЛИДИРОВАННЫХ НАНОМАТЕРИАЛОВ

Технология получения пленок Ленгмюра–Блоджетт (продолжение)
Типы (X, Y, Z) формируемых слоистых структур при переносе нескольких
монослоев на подложку (гидрофильную (Y) или гидрофобную (X, Z))

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Наноматериалы

Если при уменьшении объема какого-либо вещества по одной, двум или трем координатам до размеров нанометрового масштаба возникает новое качество, или это качество возникает в композиции из таких объектов, то эти образования следует отнести к наноматериалам, а технологии их получения и дальнейшую работу с ними _ к нанотехнологиям. Подавляющее большинство новых физических явлений на наномасштабах проистекает из волновой природы частиц (электронов и т.д.), поведение которых подчиняется законам квантовой механики. Проще всего это пояснить на примере полупроводников. Когда по одной или нескольким координатам размеры становятся порядка и меньше длины волны де Бройля носителей заряда _ полупроводниковая структура становится резонатором, а спектр носителей заряда _ дискретным. То же самое с рентгеновскими зеркалами. Толщины слоев, способных отражать в фазе рентгеновское излучение, лежат в нанометровом диапазоне. В других случаях возникновение нового качества может быть связано с менее наглядными явлениями. Представляется, что такой подход позволяет составить достаточно полное представление о наноматериалах и возможных областях их использования.

Полупроводниковые наноструктуры

Используя методы "зонной инженерии" и "инженерии волновых функций" можно конструировать квантоворазмерные структуры с заданным электронным спектром и требуемыми оптическими, электрическими и другими свойствами. Поэтому они очень удобны для приборных применений. наноматериалы полупроводниковый молекулярный магнитный

Квантовые ямы. Этим термином обозначаются системы, в которых имеется размерное квантование движения носителей заряда в одном направлении. Первоначально основные исследования квантовых ям проводились на инверсионных каналах кремниевых МОП транзисторов, позднее и до настоящего времени широко исследуются свойства квантовых ям в гетероструктурах. Основные физические явления в квантовых ямах: размерное квантование электронного спектра, квантовый эффект Холла (целочисленный и дробный), при специальном приготовлении очень высокая подвижность электронов. Основные методы получения квантовых ям на гетероструктурах: металлоорганическая газовая эпитаксия и молекулярно-пучковая эпитаксия.

Приборные применения: высокочастотные полевые транзисторы с высокой подвижностью электронов, полупроводниковые гетеролазеры и светодиоды от ближнего ИК до голубого света, лазеры дальнего ИК диапазона, параметрические источники света среднего ИК диапазона, фотоприемники среднего ИК диапазона, примесные фотоприемники дальнего ИК диапазона, приемники дальнего ИК диапазона на квантовом эффекте Холла, модуляторы в ближнем ИК диапазоне.

Квантовые проволоки _ это системы, в которых движение носителей заряда квантовано в двух направлениях. Первые квантовые проволоки выполнялись на основе квантовых ям посредством создания потенциального рельефа с помощью двух затворов, расположенных над квантовой ямой. Основные физические явления в квантовых проволоках: квантование проводимости, сильно коррелированный электронный транспорт. Основные методы получения квантовых проволок те же, что и квантовых ям, плюс использование прецизионного травления или специальных затворов. Приборных применений пока нет.

Квантовые точки _ нанообъекты, в которых движение носителей заряда квантовано во всех трех направлениях. Имеют дискретный энергетический спектр (искусственный атом). Основные физические явления в квантовых точках: одноэлектронные и однофотонные явления. Методы получения те же, что и для квантовых ям, однако несколько иные режимы, если происходит спонтанный рост квантовых точек по механизму Странски-Крастанова. Или использование прецизионной литографии для создания квантовых точек из квантовых ям.

Приборные применения: лазеры и светодиоды в ближнем ИК диапазоне, фотоприемники для среднего ИК диапазона, однофотонные приемники, однофотонные генераторы, одноэлектронные транзисторы.

Структуры с туннельно-прозрачными барьерами (системы квантовых ям и сверхрешетки). Основные физические явления в таких системах: резонансное туннелирование; формирование минизонного спектра в сверхрешетках _ периодических системах, содержащих много квантовых ям, разделенных туннельно-прозрачными барьерами; нелинейные электрические и оптические явления в сверхрешетках. Методы выращивания этих структур те же, что и для квантовых ям.

Приборные применения: резонансно-туннельные диоды (генераторы и смесители в гигагерцовом и терагерцовом диапазонах); мощные генераторы и смесители на сверхрешетках: каскадные лазеры среднего и дальнего ИК диапазонов.

Фотонные кристаллы _ системы, в которых имеется зонный спектр для фотонов. Основные физические явления: отсутствие пропускания (полное отражение) света в определенном диапазоне частот, резонансные фотонные состояния. Существует несколько методов выполнения фотонных кристаллов, но все они пока несовершенны.

Возможные приборные применения: эффективные лазеры с низкими пороговыми токами, системы управления световыми потоками.

Магнитные наноструктуры

Развитие методов напыления сверхтонких пленок и нанолитографии привело в последнее десятилетие к активному изучению магнитных наноструктур. Стимулом этой активности является идея о создании новых магнитных наноматериалов для сверхплотной записи и хранения информации. При этом предполагается, что каждая частица несет один бит информации. Если расстояние между частицами составляет 100 нм, то ожидаемая плотность записи - 10 Гбит/см 2 . Принципиальными ограничениями плотности записи при таком подходе являются магнитостатическое взаимодействие частиц и значительные термические флуктуации. Последние имеют существенную специфику для малых ферромагнитных частиц, которая проявляется в экспоненциальном росте вероятности распада намагниченного состояния с уменьшением размера частицы (суперпарамагнетизм).

Достижением в исследовании магнетизма наноматериалов следует признать открытие эффекта гигантского магнитосопротивления. Суть эффекта заключается в изменении сопротивления (порядка нескольких десятков процентов) многослойной структуры из сверхтонких ферромагнитных и диамагнитных слоев (например, Со /Cu ) при смене ферромагнитного упорядочения в структуре на антиферромагнитное. Можно сказать, что такие многослойные структуры представляют собой новый тип доменной структуры ферромагнетика, в котором роль доменов играют ферромагнитные пленки, а доменными стенками являются пленки диамагнетика. Этот эффект находит свое применение при создании новых датчиков магнитного поля, а также при разработке сред для сверхплотной записи информации.

Дальнейшее продвижение в область малых размеров привело к открытию нового явления _ туннелирования магнитного момента в сверхмалых ферромагнитных частицах. К этой группе наноматериалов относятся искусственные кристаллы, содержащие магнитные кластеры М n 12 и Fe 3 . Магнитный момент таких кластеров равен 10 магнетонам Бора, т.е. занимает промежуточное положение между магнитным моментом атомов и макроскопических частиц. Обменное взаимодействие между кластерами в кристалле отсутствует, а магнитная анизотропия весьма высока. Таким образом, появляется возможность квантовых переходов между магнитными равновесными состояниями в кластерах. Изучение этих процессов представляется интересным и важным с точки зрения разработки элементной базы квантовых компьютеров.

Двумерные многослойные структуры из пленок нанометровой толщины

В данном случае рассматриваются такие комбинации материалов, которые обеспечивают наиболее сильное отражение электромагнитных волн. Длина волны излучения, эффективно взаимодействующего с многослойной структурой, и ее период связаны соотношением, где _ это угол скольжения падающего луча. Диапазон длин волн, в котором эффективно использование этих устройств, простирается от экстремального ультрафиолетового излучения (нм) до жесткого рентгеновского (нм), т.е. диапазон, в котором наиболее длинные волны в 6000 раз больше самых коротких. Для видимого света это соотношение равно ~2. Соответственно, столь же велико количество явлений природы, физические проявления которых находятся в этой спектральной области.

Структуры представляют собой искусственные одномерные кристаллы из пленок нанометровой толщины, и кроме возможности их использовать для управления излучением в зависимости от материалов слоев (диэлектрик, полупроводник, металл, сверхпроводник), они могут быть интересны и для других физических приложений. Так, если одним из материалов многослойных наноструктур служит сверхпроводник, то это система множественных последовательно включенных совершенно идентичных джозефсоновских переходов. Если металл чередуется с полупроводником _ это система последовательно включенных диодов Шоттки.

В наиболее коротковолновой части диапазона 0,01-0,02 нм рентгеновские зеркала позволяют фокусировать излучение синхротронов или рентгеновских трубок на исследуемые объекты или формировать параллельные пучки. В частности, их применение увеличивает эффективность рентгеновских трубок в 30-100 раз, что делает возможным заменить синхротронное излучение в ряде биологических, структурных и материаловедческих исследований. Приблизительно в этом же диапазоне лежит излучение высокотемпературной плазмы (лазерной и ТОКАМАКов). Здесь зеркала нашли применение как дисперсионные элементы для спектральных исследований.

В диапазоне 0,6-6 нм лежит характеристическое излучение легких элементов от бора до фосфора. Здесь рентгеновские зеркала также используются для исследования спектров в приборах элементного анализа материалов.

Рентгеновская многослойная оптика широко применяется для формирования фильтрации и управления поляризацией в синхротронных источниках. В области 10-60 нм лежат линии излучения солнечной плазмы. Объективы космических телескопов из рентгеновских зеркал и сейчас находятся на орбите и регулярно передают на Землю изображение Солнца на линиях Fe IX_Fe XI (17,5 нм) и Не II (30,4 нм).

Особое место занимает применение многослойных зеркал в технологиях микроэлектроники. Мы являемся свидетелями и участниками крупнейшего события в твердотельной электронике: это переход на длину волны более чем в 10 раз короче (от 157 нм к 13 нм) в литографии _ процессе, обеспечивающем получение рисунка полупроводниковых приборов и интегральных схем. Именно длина волны излучения, используемого для получения рисунка, отвечает за размеры его минимальных элементов. До сих пор изменение длины волны излучения от поколения к поколению литографических установок не превышало 25%. Одновременно в 10 раз повышаются требования к точности изготовления всех элементов оптики и механизмам настройки и экспонирования. Фактически это означает переход всех обрабатывающих технологий на атомарную точность. Неучастие в этом процессе может оставить страну в прошлой цивилизации.

Молекулярные наноструктуры

Органические материалы в последнее время интенсивно вовлекаются в нанотехнологии и как неотъемлемые участники технологическою процесса (например, в нанолитографии), и как самостоятельные объекты и устройства _ в так называемой молекулярной электронике.

Многообразие органического мира хорошо известно (около 2 млн синтезированных соединений, и это количество непрерывно растет) _ от "полунеорганических" комплексов (углеродные кластеры, металлоорганика) до биологических объектов (ДНК, гемы). С точки зрения материалов для нанотехнологии и молекулярной электроники условно можно выделить три основных класса: полимеры, молекулярные ансамбли (molecular assemblies, selfaggregated systems) и единичные молекулы: последние называются также "умные" или "функциональные" молекулы (smart molecules).

Первый класс изучается наиболее давно и по общей совокупности работ, наверное, наиболее интенсивно. Кроме того, диэлектрические, оптические и люминесцентные свойства различных поли- и олигомеров уже широко используют в технике и электронике, они стоят ближе всего к рынку и экономическому эффекту.

Второй класс _ молекулярные ансамбли нано-метровых размеров - изучается сравнительно недавно. К ним относятся, например, агрегаты на основе порфиринов (в том числе хлорофилла) и других амфифильных молекул, получаемые из растворов. Супрамолекулярная (то есть надмолекулярная, иерархическая) организация сложна и интересна, ее исследование и связь с (фото-) электрическими свойствами проливает свет на биологические и природные процессы (клеточный транспорт, фотосинтез). Обнаружена чувствительность, а главное _ уникальная избирательность таких систем к внешним воздействиям (свет, атмосфера, вибрация), что позволяет использовать их в различных сенсорах, в том числе со смешанной электронно-ионной проводимостью. Исследуются наноразмерные молекулярные стержни и проволоки (molecular rods and wires), в том числе в качестве интерфейса между неорганическими материалами (например, двумя металлическими электродами). Предполагается, что со временем будет происходить интегрирование с классической приборной базой.

Вообще системы, построенные в основном на Ван-дер-Ваальсовых или водородных связях, представляют собой очень перспективный с точки зрения дизайна твердого тела объект с двумя уровнями свободы: внутримолекулярная структура, которая может быть модифицирована (изменена при синтезе) и которая ответственна, например, за поглощение или испускание света; межмолекулярная структура, которая может быть изменена при росте кристалла (пленки, эпитаксиального слоя), и которая ответственна за фазовые явления, транспорт носителей заряда, магнитные свойства. В качестве примера: фталоцианин меди и периферийно-фторированный фталоцианин меди структурно изоморфны, однако представляют собой полупроводники - и -типа, соответственно. Полностью органические выпрямляющие переходы на основе вакуумно-осажденных слоев интенсивно исследуются в настоящее время. Вместе с тем, допирование пленок фталоцианина сильным акцептором (например, йодом) изменяет фазовую структуру вплоть до получения квазиодномерной металлической проводимости.

Важную группу составляют также самоорганизующиеся монослои (self-assembled monolayers, SAM"s) на основе органических молекул или цепочек различного строения, которые исследуют как перспективные передающие материалы при литографии, так и для изучения электропереноса вдоль контура сопряжения молекулы. Здесь уже начинается третий класс.

Третий класс или способ применения органических материалов в нанотехнологиях самый молодой. Это то, что в западных конкурсах называется emergent или futuristic technologies (внезапно возникающие или футуристические технологии). Если жидко-кристаллические дисплеи, технологии CD-R, фотопреобразователи, сенсоры и другие устройства на органических материалах хорошо известны и постепенно (хотя и медленно _ из-за понятного торможения со стороны уже широко инвестированного и раскрученного "силиконового" и GaAs-ного приоритета) приходят на рынок, то одномолекулярные устройства (приборы) в реальном производстве отсутствуют. Более того, если макроскопические свойства классических органических твердых тел (молекулярных кристаллов) имеют удовлетворительное теоретическое описание, то процессы, ожидаемые в одномолекулярных устройствах, видятся гораздо менее отчетливо. Самый упрощенный подход: берем некую молекулу, которая представляет собой хорошо организованную квантовую систему, делаем к ней электроды и получаем, например, диод. Тут сразу возникает много новых вопросов. В частности, граница металл/молекулярный полупроводник даже на макроуровне весьма неопределена.

И тем не менее истинно "наноразмерные" эффекты ожидаются именно в этом классе. Конструируются молекулярные наномашины и наномо-торы (роторы), динамические молекулярные переключатели, транспортировщики энергии, устройства распознавания, хранения информации. Для исследования инжекции носителей и туннельного тока в отдельных молекулах совершенствуются методы зондовой микроскопии.

Следует впрочем не забывать, что в числе главных достоинств (если не самые главных) органики находятся дешевизна и доступность. Изощренный синтез новых соединений делает их едва ли не дороже высокочистых неорганических веществ, поэтому наибольшие практические перспективы имеют исследование и модификация (оптимизация) широко распространенных и изученных (более или менее) соединений с высокой стабильностью и способностью интегрироваться (не обязательно) в разработанные технологические процессы. Из наиболее известных _ это фталоцианины, фуллерены, политиофены и полиарены.

Фуллереноподобные материалы

Графит, алмаз и не всеми признанный карбин в течение долгого времени считались основными аллотронными состояниями углерода. Их применяли во многих отраслях промышленности и техники, в том числе в микро- и оптоэлектронике. За 10 лет до конца XX века были обнаружены сначала в космосе, а потом получены в лаборатории новые молекулярные формы углерода _ фуллерены и фуллереноподобные индивидуальные вещества и материалы. В конце прошлого века по фуллеренам (их получению, исследованию и применению) каждый год выходило в свет до 1000 и более публикаций. Обнаружено, что самоорганизация фуллереновых структур происходит повсюду: в космосе, в природных процессах на Земле, в промышленных процессах (черная металлургия), в лабораториях. Свойства и структура этих материалов настолько разнообразны и интересны, что фуллереновые материалы начинают широко применять в промышленности: от микро- и наноэлектроники до эффективных медицинских препаратов.

К фуллереновым материалам, полученным и изучаемым в настоящее время, относятся следующие:

? Фуллерены. Они образуют молекулярно-кристаллические твердые тела, часто вследствие большого размера и высокой симметрии своих молекул _ пластические кристаллы без температуры плавления. Они образованы молекулами, имеющими форму либо сфер, либо эллипсов, хотя возможны их другие комбинации (полусферы с цилиндрами из углерода). Возможны многослойные сферы или эллипсы ("оолитовые" или "луковичные" структуры). Размер молекул главного представителя фуллеренов составляет 1 нм, и в растворе молекулы обладают свойствами броуновской частицы;

Углеродные нанотрубки. Они образованы из свернутых по различным направлениям графитовых плоскостей и закрыты на концах сетчатыми углеродными полусферами. Такие "графитовые" нанотрубки могут быть однослойными и многослойными. Последние могут быть переведены окислением и травлением в однослойные. Углеродные нанотрубки могут иметь разветвления и изгибы. В этом случае они теряют исходную "графитовую" структуру и не называются "графитовыми". Однослойные нанотрубки имеют размеры от 1 до 10 нм в диаметре и длину 100-1000 нм и более, а многослойные имеют диаметры и длину в 10-100 раз больше. Твердые тела могут быть образованы из жгутов нанотрубок или коллинеарных (но более коротких) образований;

Наполненные фуллерены (эндо-производные). Наполнением могут быть молекулы инертных или других газов, небольшие органические и неорганические молекулы, атомы металлов (щелочных, щелочноземельных, лантанидов и др.). Несмотря на трудности получения и малый выход таких производных, присущие им свойства заставляют исследовать их синтез и возможные применения. Эти производные в большинстве своем имеют крайне низкие потенциалы ионизации по сравнению с металлами, и, по-видимому, обладают металлическими свойствами;

Наполненные углеродные нанотрубки. Помимо перечисленного выше для наполнения могут быть использованы фуллерены меньшего диаметра;

Неорганические нанотрубки (, и др.).

Патентная литература и применения фуллереноподобных материалов чрезвычайно разнообразны. Фуллереноподобные материалы обладают рядом замечательных характеристик, включая химическую стойкость, высокую прочность, жесткость, ударную вязкость, теплопроводность и (что, возможно, важнее всего) электропроводность. В зависимости от тонких особенностей молекулярной симметрии фуллерены и нанотрубки могут быть диэлектриками, полупроводниками, обладать металлической проводимостью и высокотемпературной сверхпроводимостью. Эти свойства в сочетании с наномасштабной геометрией делают их почти идеальными _ возможно даже уникальными _ материалами для изготовления электрических проводов, сверхпроводящих соединений или целых устройств, которые с полным основанием можно назвать изделиями молекулярной электроники. Химической сборке элементов различных схем благоприятствуют свойства фуллерена, который может образовывать ионы от +6 до _6 и в различных матрицах _ связи с донорами, акцепторами, свободными радикалами и ионами. Фуллерены могут также использоваться при создании средств молекулярной оптоэлектроники для фемтосекундной оптоволоконной передачи информации. Полимеризация фуллеренов при электроннолучевом или ионизирующем воздействии дает возможность получать резисты нового поколения.

Углеродные нанотрубки используются в качестве игольчатых щупов сканирующих зондовых микроскопов и в дисплеях с полевой эмиссией, в высокопрочных композиционных материалах, электронных устройствах со схемами из коротких нанотрубок, подвергнутых манипулированию и сборке. Молекулярный характер фуллереновых материалов позволяет разработать химическую стратегию сборки этих элементов в пригодные для использования структуры, материалы и возможно даже молекулярные электронные устройства.

Конструкционные наноматериалы

Использование современных конструкционных материалов обычно ограничивается тем, что увеличение прочности приводит к снижению пластичности. Данные по нанокомпозитам показывают, что уменьшение структурных элементов и более глубокое изучение физики деформационных процессов, которые определяют пластичность наноструктурных материалов, могут привести к созданию новых типов материалов, сочетающих высокие прочность и пластичность.

Анализ проведенных в последние годы отечественных и зарубежных исследований свидетельствует о высокой перспективности следующих основных направлений в области разработки конструкционных материалов: изготовление наноструктурных керамических и композиционных изделий точной формы, создание наноструктурных твердых сплавов для производства режущих инструментов с повышенной износостойкостью и ударной вязкостью, создание наноструктурных защитных термо- и коррозионно-стойких покрытий, создание обладающих повышенной прочностью и низкой воспламеняемостью полимерных композитов с наполнителями из наночастиц и нанотрубок.

В лабораторных исследованиях получены образцы изделий из нанофазной керамики (плотности на уровне 0,98-0,99 от теоретического значения) на основе оксидов алюминия и ряда переходных металлов. Экспериментально подтверждено, что плотная наноструктурная керамика имеет повышенную пластичность при сравнительно невысоких температурах. Увеличение пластичности при уменьшении размера частиц вызвано сдвиговым перемещением нанокристаллических зерен относительно друг друга при наложении нагрузки. При этом отсутствие нарушения межзеренной связи объясняется эффективным диффузионным переносом атомов в приповерхностном слое частиц. В перспективе повышенная пластичность означает возможность сверхпластичного формования керамических и композиционных изделий, что исключает необходимость трудо- и энергозатратной финишной обработки материалов высокой твердости.

В последние годы разработаны нанокомпозитные металлокерамические материалы, в частности, на основе и, значительно превосходящие по износостойкости, прочности и ударной вязкости аналоги с обычной микроструктурой. Повышенные эксплуатационные характеристики нанокомпозитных материалов обусловлены образованием при спекании специфических непрерывных нитевидных структур, формирующихся в результате трехмерных контактов между наночастицами разных фаз. Разработка и внедрение в промышленное производство технологии создания нанокомпозитных изделий будет способствовать решению проблемы изготовления высококачественных режущих инструментов.

Повышение коррозионной стойкости наноструктурных покрытий обусловлено, в первую очередь, снижением удельной концентрации примесей на поверхности зерен по мере уменьшения их размеров. Более чистая поверхность обеспечивает более однородную морфологию и более высокую коррозионную стойкость межзеренных границ. Наноструктурные покрытия характеризуются сверхвысокой прочностью. Один из основных механизмов упрочнения обусловлен эффектом скопления дислокаций вблизи препятствий, которыми при уменьшении размеров зерен являются их границы. Важным преимуществом покрытий с наноразмерной структурой является обусловленная повышенной пластичностью возможность снижения в них остаточных напряжений, что позволяет изготовлять покрытия миллиметровой толщины.

Использование диспергированных в полимерной матрице неорганических наполнителей из наноразмерных порошков позволяет существенно повысить огнестойкость пластмасс, являющуюся одним из основных недостатков при использовании их в качестве конструкционных материалов, поскольку продукты сгорания полимеров, как правило, представляют собой ядовитые вещества. Результаты исследований показывают, что снижение горючести может быть доведено до самозатухания пламени. При этом наноразмерные порошковые наполнители не снижают механической прочности и обрабатываемости материалов. Полимерные нанокомпозиты обладают высокой абляционной стойкостью, что открывает перспективы их использования для защиты поверхности изделий, эксплуатируемых в условиях воздействия высоких температур.

Размещено на Allbest.ru

...

Подобные документы

    Методы получения наноматериалов. Синтез наночастиц в аморфных и упорядоченных матрицах. Получение наночастиц в нульмерных и одномерных нанореакторах. Цеолиты структурного типа. Мезопористые алюмосиликаты, молекулярные сита. Слоистые двойные гидроксиды.

    курсовая работа , добавлен 01.12.2014

    Понятие токсичности и наноматехнологии. Преимущества и недостатки использования наноматериалов. Лабораторные исследования по токсичности наноматериалов. Исследования по токсичности наноматериалов на живых организмах. Применение наноматериалов в медицине.

    реферат , добавлен 30.08.2011

    Применение газовых сенсоров в системах автоматической пожарной сигнализации. Основные стадии наночастиц и наноматериалов. Механические свойства наноматериалов. Мицеллярные и полимерные гели. Золь-гель метод синтеза тонких пленок с солями металлов.

    курсовая работа , добавлен 21.12.2016

    Классификация цветных металлов, особенности применения и обработки. Эффективные методы защиты цветного металла от атмосферной коррозии. Алюминий и алюминиевые сплавы. Металлические проводниковые и полупроводниковые материалы, магнитные материалы.

    курсовая работа , добавлен 09.02.2011

    Возникновение и развитие нанотехнологии. Общая характеристика технологии консолидированных материалов (порошковых, пластической деформации, кристаллизации из аморфного состояния), технологии полимерных, пористых, трубчатых и биологических наноматериалов.

    реферат , добавлен 19.04.2010

    Классификация цветных металлов, особенности их обработки и области применения. Производство алюминия и его свойства. Классификация электротехнических материалов. Энергетическое отличие металлических проводников от полупроводников и диэлектриков.

    курсовая работа , добавлен 05.12.2010

    Классификация и основные свойства теплоизоляционных материалов и изделий. Характеристика их отдельных видов, созданных на основе синтетического сырья. Сопротивление теплопередаче наружных стен зданий. Методы получения высокопористой структуры материалов.

    реферат , добавлен 01.05.2017

    Обзор современного оборудования для получения тонких пленок. Материалы и конструкции магнетронов для ионного распыления тонких пленок. Назначение, конструктивные элементы рабочей камеры установки "Оратория-5". Основные неисправности, методы их устранения.

    курсовая работа , добавлен 24.03.2013

    Влияние условий осаждения на структуру, электрические и магнитные свойства пленок кобальта. Рентгеноструктурные исследования пленок кобальта. Влияние условий осаждения на морфологию поверхности и на толщину пленок. Затраты на амортизацию оборудования.

    дипломная работа , добавлен 24.07.2014

    Твердые сплавы и сверхтвердые композиционные материалы: инструментальные, конструкционные, жаростойкие; их свойства и применение. Совершенствование технологии сплавов, современные разработки получения безвольфрамовых минералокерамических соединений.

Введение

1 Возникновение и развитие нанотехнологии

2 Основы технологии наноматериалов

2.1 Общая характеристика

2.2 Технология консолидированных материалов

2.2.1 Порошковые технологии

2.2.2 Интенсивная пластическая деформация

2.2.3 Контролируемая кристаллизавия из аморфного состояния

2.2.4 Технология пленок и покрытий.

2.3 Технология полимерных, пористых, трубчатых и биологических наноматериалов

2.3.1 Гибридные и супрамолекулярные материалы

2.3.2 Нанопористые материалы (молекулярные сита)

2.3.3 Трубчатые материалы

2.3.4 Полимерные материалы

3 Общая характеристика применения наноматериалов

Заключение

В последние несколько лет нанотехнология стала рассматриваться не только как одна из наиболее многообещающих ветвей высокой технологии, но и как системообразующий фактор экономики 21 века – экономики, основанной на знаниях, а не на использовании природных ресурсов или их переработке. Помимо того, что нанотехнология стимулирует развитие новой парадигмы всей производственной деятельности («снизу-вверх» - от отдельных атомов - к изделию, а не «сверху вниз», как традиционные технологии, в которых изделие получают путем отсечения излишнего материала от более массивной заготовки), она сама является источником новых подходов к повышению качества жизни и решению многих социальных проблем в постиндустриальном обществе. По мнению большинства экспертов в области научно-технической политики и инвестирования средств, начавшаяся нанотехнологическая революция охватит все жизненно важные сферы деятельности человека (от освоения космоса - до медицины, от национальной безопасности - до экологии и сельского хозяйства), а ее последствия будут обширнее и глубже, чем компьютерной революции последней трети 20 века. Все это ставит задачи и вопросы не только в научно-технической сфере, но и перед администраторами различного уровня, потенциальными инвесторами, сферой образования, органами государственного управления и т.д.


Нанотехнология сформировалась на основе революционных изменений в компьютерных технологиях. Электроника как целостное направление возникло около 1900 г. и продолжала бурно развиваться в течение всего прошлого столетия. Исключительно важным событием в ее истории стало изобретение транзистора в 1947 г. После этого началась эпоха расцвета полупроводниковой техники, при которой размеры создаваемых кремниевых устройств постоянно уменьшались. Одновременно с этим непрерывно возрастали быстродействие и объем магнитных и оптических запоминающих устройств.

Однако по мере приближения размеров полупроводниковых устройств к 1 микрону в них начинают проявляться квантово-механические свойства вещества, т.е. необычные физические явления (типа туннельного эффекта). Можно с уверенностью предположить, что при сохранении нынешних темпов развития мощности компьютеров вся полупроводниковая технология примерно через 5-10 лет столкнется с проблемами фундаментального характера, так как быстродействие и степень интеграции в ЭВМ достигнут некоторых «принципиальных» границ, определяемых известными нам законами физики. Таким образом, дальнейший прогресс науки и техники требует от исследователей существенного «прорыва» к новым принципам работы и новым технологическим приемам.

Такой прорыв может быть осуществлен только за счет использования нанотехнологий, которые позволят создать целый ряд принципиально новых производственных процессов, материалов и устройств, например нанороботов .

Расчеты показывают, что использование нанотехнологий может повысить основные характеристики полупроводниковых вычислительных и запоминающих устройств на три порядка, т.е. в 1000 раз .

Однако нанотехнологию не стоит сводить только к локальному революционному прорыву в электронике и компьютерных технологиях. Уже сейчас получен ряд исключительно важных результатов, позволяющих надеяться на существенный прогресс в развитии других направлений науки и техники.

На многих объектах в физике, химии и биологии показано, что переход на наноуровень приводит к появлению качественных изменений в физико-химических свойствах отдельных соединений и получаемых на их основе систем. Речь идет о коэффициентах оптического сопротивления, электропроводности, магнитных свойствах, прочности, термостойкости. Более того, согласно наблюдениям новые материалы, получаемые с использованием нанотехнологий, значительно превосходят по своим физическим, механическим, термическим и оптическим свойствам аналоги микрометрического масштаба.

На основе материалов с новыми свойствами уже сейчас создаются новые типы солнечных батарей, преобразователей энергии, экологически безопасных продуктов и многое другое. Уже созданы высокочувствительные биологические датчики (сенсоры) и другие устройства, позволяющие говорить о возникновении новой науки - нанобиотехнологии и имеющие огромные перспективы практического применения. Нанотехнология предлагает новые возможности микрообработки материалов и создания на этой основе новых производственных процессов и новых изделий, что должно оказать революционное воздействие на экономическую и социальную жизнь будущих поколений .


2.1 Общая характеристика

Структура и соответственно свойства наноматериалов формируются на стадии их изготовлёния. Вполне очевидно значение технологии как основы для обеспечения стабильных и оптимальных эксплуатационных характеристик наноматериалов; это важно также с точки зрения их экономичности.

Для технологии наноматериалов в соответствии с многообразием последних характерно сочетание, с одной стороны, металлургических, физических, химических и биологических методов, а с другой стороны, традиционных и принципиально новых приемов. Так, если подавляющее большинство методов получения консолидированных наноматериалов достаточно традиционны, то такие операции, как изготовление, например, «квантовых загонов» с помощью сканирующего туннельного микроскопа, формирование квантовых точек самосборкой атомов или использование ионно-трековой технологии для создания пористых структур в полимерных материалах основаны на принципиально иных технологических приемах.

Весьма разнообразны и методы молекулярной биотехнологии. Все это усложняет изложение основ технологии наноматериалов, учитывая и то, что многие технологические подробности («ноу-хау») авторы описывают только в общих чертах, а зачастую сообщение носит рекламный характер. Далее проанализированы лишь основные и наиболее характерные технологические приемы.


2.2.1 Порошковые технологии

Под порошком понимают совокупность находящихся в соприкосновении индивидуальных твердых тел (или их агрегатов) небольших размеров - от нескольких нанометров до тысячи микрон . Применительно к изготовлению наноматериалов в качестве исходного сырья используют ультрадисперсные порошки, т.е. частицы размером не более 100 им, а также более крупные порошки, полученные в условиях интенсивного измельчения и состоящие из мелких кристаллитов размером, подобным указанным выше.

Последующие операции порошковой технологии - прессование, спекание, горячее прессование и т. п. - призваны обеспечить получение образца (изделия) заданных форм и размеров с соответствующей структурой и свойствами. Совокупность этих операций часто называют, по предложению М.Ю. Бальшина, консолидацией. Применительно к наноматериалам консолидация должна обеспечить, с одной стороны, практически полное уплотнение (т.е. отсутствие в структуре макро- и микропор), а с другой стороны, сохранить наноструктуру, связанную с исходными размерами ультрадисперсного порошка (т. е. размер зерен в спеченных материалах должен быть как можно меньше и во всяком случае менее 100 нм).

Методы получения порошков для изготовления наноматериалов весьма разнообразны; их условно можно разделить на химические и физические, основные, из которых с указанием наиболее характерных ультрадисперсных порошков, приведены в Таблице 1.


Таблица 1 . Основные методы получения порошков для изготовления наноматериалов

Метод Вариант метода Материалы
Физические методы
Испарение и конденсация В вакууме или в инертном газе Zn, Cu, Ni, Al, Be, Sn, Pb, Mg, Ag, Cr, MgO, Al 2 O 3 , Y 2 O 3 , ZrO 2 , SiC
В реакционном газе TiN, AlN, ZrN, NbN, ZrO 3 , Al 2 O 3 , TiO 2 .

Высокоэнергетическое разрушение

Измельчение Fe-Cr, Be, Al 2 O 3 , TiC, Si 3 N 4 , NiAl, TiAl, AlN
Детонационная обработка BN, SiN, TiC, Fe, алмаз
Электрический взрыв Al, Cd, Al 2 O 3 , TiO 2 .
Химические методы
Синтез Плазмохимический TiC, TiN, Ti(C,N), VN, AlN, SiC, Si 3 N 4 , BN, W
Лазерный Si 3 N 4 , SiC, Si 3 N 4 -SiC
Термический Fe, Cu, Ni, Mo, W, BN, TiC, WC-Co
Самораспространяю-щийся высокотемпературный SiC, MoSi 2 , Aln, TaC
Механохимический TiC, TiN, NiAl, TiB 2 , Fe-Cu, W-Cu
Электрохимический WC, CeO 2 , ZrO 2 , WB 4
Растворный Mo 2 C, BN, TiB 2 , SiC
Криохимический Ag, Pb, Mg, Cd
Термическое разложение Конденсированные прекурсоры Fe, Ni, Co, SiC, Si 3 N 4 , BN, AlN, ZrO 2 , NbN
Газообразные прекурсоры ZrB 2 , TiB 2 , BN

Рассмотрим некоторые из методов получения ультрадисперсных порошков.

Электрооборудование