Блок тиристорных усилителей бту. Электрические схемы бесплатно. Схема датчика уровня воды на тиристоре Тиристорное управление нагрузкой

— устройство, обладающее свойствами полупроводника, в основе конструкции которого лежит монокристаллический полупроводник, имеющий три или больше p-n-переходов.

Его работа подразумевает наличие двух стабильных фаз:

  • «закрытая» (уровень проводимости низкий);
  • «открытая» (уровень проводимости высоки).

Тиристоры — устройства, выполняющие функции силовых электронных ключей. Другое их наименование — однооперационные тиристоры. Данный прибор позволяет осуществлять регуляцию воздействия мощных нагрузок посредством незначительных импульсов.

Согласно вольт-амперной характеристике тиристора, увеличение силы тока в нём будет провоцировать снижение напряжения, то есть появится отрицательное дифференциальное сопротивление.

Кроме того, эти полупроводниковые устройства могут объединять цепи с напряжением до 5000 Вольт и силой тока до 5000 Ампер (при частоте не более 1000 Гц).

Тиристоры с двумя и тремя выводами пригодны для работы как с постоянным, так и с переменным током. Наиболее часто принцип их действия сравнивается с работой ректификационного диода и считается, что они являются полноценным аналогом выпрямителя, в некотором смысле даже более эффективным.

Разновидности тиристоров отличаются между собой:

  • Способом управления.
  • Проводимостью (односторонняя или двусторонняя).

Общие принципы управление

В структуре тиристора имеется 4 полупроводниковых слоя в последовательном соединении (p-n-p-n). Контакт, подведённый к наружному p-слою — анод, к наружному n-слою — катод. Как результат, при стандартной сборке в тиристоре максимально может быть два управляющих электрода, которые крепятся к внутренним слоям. Соответственно подключённому слою проводники, по типу управления устройства делятся на катодные и анодные. Чаще используется первая разновидность.

Ток в тиристорах течёт в сторону катода (от анода), поэтому соединение с источником тока осуществляет между анодом и плюсовым зажимом, а также между катодом и минусовым зажимом.

Тиристоры с управляющим электродом могут быть:

  • Запираемыми;
  • Незапираемыми.

Показательным свойством незапираемых приборов является отсутствие у них реакции на сигнал с управляющего электрода. Единственный способ закрыть их — снизить уровень протекающего сквозь них тока так, чтобы он уступал силе тока удержания.

Управляя тиристором следует учитывать некоторые моменты. Устройство данного типа сменяет фазы работы с «выключен» на «включён» и обратно скачкообразно и только при условии внешнего воздействия: при помощи тока (манипуляции с напряжением) или фотонов (в случаях с фототиристором).

Чтобы разобраться в данном моменте необходимо помнить, что у тиристора преимущественно имеется 3 вывода (тринистор): анод, катод и управляющий электрод.

Уэ (управляющий электрод) как раз таки и отвечает за то, чтобы включать и выключать тиристор. Открытие тиристора происходит при условии, что приложенное напряжение между А (анодом) и К (катодом) становится равным или превосходит объём напряжения работы тринистора. Правда, во втором случае потребуется воздействие импульса положительной полярности между Уэ и К.

При постоянной подаче питающего напряжения тиристор может быть открыт бесконечно долго.

Чтобы перевести его в закрытое состояние, можно:

  • Снизить уровень напряжения между А и К до нуля;
  • Понизить значение А-тока таким образом, чтобы показатели силы тока удержания оказались больше;
  • Если работа цепи построена на действии переменного тока, выключение прибора произойдёт без постороннего вмешательства, когда уровень тока сам снизится до нулевого показания;
  • Подать запирающее напряжение на Уэ (актуально только в отношении запираемых разновидностей полупроводниковых устройств).

Состояние закрытости тоже длится бесконечно долго, пока не возникнет запускающий импульс.

Конкретные способы управления

  • Амплитудный .

Представляет собой подачу положительного напряжения изменяющейся величины на Уэ. Открытие тиристора происходит, когда величины напряжения довольно, чтобы пробиться через управляющий переход тока спрямления (Iспр.). При помощи изменения величины напряжения на Уэ, появляется возможность изменения времени открытия тиристора.

Главный недочёт этого метода — сильное влияние температурного фактора. Кроме того, для каждой разновидности тиристора потребуется резистор другого вида. Этот момент не добавляет удобства в эксплуатации. Помимо этого время открытия тиристора возможно корректировать лишь пока длится первая 1/2 положительного полупериода сети.

  • Фазовый.

Заключается в смене фазы Uупр (в соотношении с напряжением на аноде). При этом применяется фазовращательный мост. Главный минус — малая крутизна Uупр, поэтому стабилизировать момент открытия тиристора можно лишь ненадолго.

  • Фазово-импульсный .

Рассчитан на преодоление недостатков фазового метода. С этой целью на Уэ подаётся импульс напряжения с крутым фронтом. Данный подход в настоящее время наиболее распространён.

Тиристоры и безопасность

Из-за импульсности своего действия и наличия обратного восстановительного тока тиристоры очень сильно повышает риск перенапряжения в работе прибора. Помимо этого опасность перенапряжения в зоне полупроводника высока, если в других частях цепи напряжения нет вовсе.

Поэтому во избежание негативных последствий принято использовать схемы ЦФТП. Они препятствуют появлению и удержанию критический значений напряжения.

Двухтранзисторная модель тиристора

Из двух транзисторов вполне можно собрать динистор (тиристор с двумя выводами) или тринистор (тиристор с тремя выводами). Для этого один из них должен иметь p-n-p-проводимость, другой — n-p-n-проводимость. Выполнены транзисторы могут быть как из кремния, так и из германия.

Соединение между ними осуществляется по двум каналам:

  • Анод от 2-го транзистора + Управляющий электрод от 1-го транзистора;
  • Катод от 1-го транзистора + Управляющий электрод от 2-го транзистора.

Если обойтись без использования управляющих электродов, то на выходе получится динистор.

Совместимость выбранных транзисторов определяется по одинаковому объёму мощности. При этом показания тока и напряжения должны быть обязательно больше требуемых для нормального функционирования прибора. Данные по напряжению пробоя и току удержания зависят от конкретных качеств использованных транзисторов.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на , буду рад если вы найдете на моем еще что-нибудь полезное.

В статье рассказано об использовании тиристоров, приведены простые и наглядные опыты для изучения принципов их работы. Также даны практические указания по проверке и подбору тиристоров.

Самодельные светорегуляторы

Несмотря на разнообразие и наличие в продаже таких устройств можно собрать светорегулятор по достаточно простой любительской схеме.

К тому же светорегулятор вовсе не обязательно должен регулировать свет, можно приспособить его, например, к паяльнику. В общем, применений предостаточно, готовое устройство может всегда пригодиться.

Практически все подобные устройства выполнены с применением тиристоров, о которых стоит рассказать отдельно, ну хотя бы вкратце, чтобы принцип действия тиристорных регуляторов был ясен и понятен.

Кое- что давайте повторим!

Разновидности тиристоров

Название тиристор подразумевает под собой несколько разновидностей, или как принято говорить, семейство полупроводниковых приборов. Такие приборы представляют собой структуру из четырех p и n слоев, образующих три последовательных p-n (p-n буквы латинские: от positive и negative) перехода.

Рис. 1. Тиристоры

Если от крайних областей p n сделать выводы, получившийся прибор называется диодным тиристором, по-другому динистор . Он и внешним видом похож на диод серии Д226 или Д7Ж, только диоды имеют всего лишь один p-n переход. Конструкция и схема динистора типа КН102 показана на рисунке 2.

Там же показана и схема его включения. Если сделать вывод еще от одного p-n перехода, то получится триодный тиристор, называемый тринистором. В одном корпусе может находиться сразу два тринистора, включенных встречно – параллельно. Такая конструкция называется симистором и предназначена для работы в цепях переменного тока, поскольку может пропускать как положительные, так и отрицательные полупериоды напряжения.

Рисунок 2. Внутреннее устройство и схема включения диодного тиристора КН102

Вывод катода, область n, соединен с корпусом, а вывод анода через стеклянный изолятор соединен в областью p, как показано на рисунке 1. Там же показано включение динистора в цепи питания. В цепь питания последовательно с динистором обязательно должна быть включена нагрузка , так же как если бы это был обычный диод. На рисунке 3 показана вольт - амперная характеристика динистора.

Рисунок 3. Вольт - амперная характеристика динистора

Из этой характеристики видно, что напряжение к динистору может быть приложено как в обратном направлении (на рисунке в нижней левой четверти), так и в прямом, как показано в правой верхней четверти рисунка. В обратном направлении характеристика похожа на характеристику обычного диода: через прибор протекает незначительный обратный ток, практически можно считать что и нет никакого тока.

Больший интерес представляет прямая ветвь характеристики. Если на динистор подать напряжение в прямом направлении и постепенно его увеличивать, то ток через динистор будет невелик, и изменяться будет незначительно. Но лишь до тех пор, пока не достигнет определенного значения, называемого напряжением включения динистора. На рисунке это обозначено как Uвкл.

При этом напряжении во внутренней четырехслойной структуре происходит лавинообразное увеличение тока, динистор открывается, переходит в проводящее состояние, о чем свидетельствует участок с отрицательным сопротивлением на характеристике. Напряжение участка катод – анод резко уменьшается, а ток через динистор ограничивается только лишь внешней нагрузкой, в данном случае сопротивлением резистора R1. Главное, чтобы ток был ограничен на уровне не выше предельно допустимого, который оговаривается в справочных данных.

Предельно допустимый ток или напряжение, это та величина, при которой гарантируется нормальная работа прибора в течение длительного времени. Причем следует обратить внимание на то, чтобы предельно допустимого значения достигал лишь один из параметров: если прибор работает в режиме предельно допустимого тока, то рабочее напряжение должно быть ниже, чем предельно допустимое. В противном случае нормальная работа полупроводникового прибора не гарантируется. К достижению предельно допустимых параметров специально, конечно, стремиться не надо, но уж если так получилось…

Этот прямой ток через динистор будет протекать до тех пор, пока каким - либо образом динистор будет выключен. Для этого необходимо прекратить прохождение прямого тока. Это можно сделать тремя способами: разомкнуть цепь питания, замкнуть накоротко динистор при помощи перемычки (весь ток пройдет через перемычку, а ток через динистор будет равен нулю), или изменить на противоположную полярность питающего напряжения. Такое получается если питать динистор и нагрузку переменным током. Такие же методы выключения и у триодного тиристора – тринистора.

Маркировка динисторов

Она состоит из нескольких букв и цифр, наиболее распространены и доступны отечественные приборы серии КН102 (А,Б…И). первая буква К, говорит о том, что это кремниевый полупроводниковый прибор, Н что это динистор, цифры 102 номер разработки, а вот последняя буква определяет напряжение включения.

Весь справочник тут не поместится, однако следует отметить, что КН102А имеет напряжение включения 20В, КН102Б 28В, а КН102И уже целых 150В. При последовательном включении приборов напряжение включения складывается, например два КН102А дадут в сумме напряжение включения 40В. Динисторы выпускавшиеся для оборонной промышленности вместо первой буквы К имеют цифру 2. Это же правило используется и в маркировке транзисторов.

Такая логика работы динистора позволяет на его базе собирать достаточно простые генераторы импульсов . Схема одного из вариантов показана на рисунке 4.

Рисунок 4. Генератор на динисторе

Принцип работы такого генератора достаточно прост: выпрямленное диодом VD1 сетевое напряжение через резистор R1 заряжает конденсатор C1, и как только напряжение на нем достигнет напряжения включения динистора VS1, последний открывается, и конденсатор разряжается через лампочку EL1, которая дает кратковременную вспышку, после которой процесс повторяется сначала. В реальных схемах вместо лампочки может устанавливаться трансформатор, с выходной обмотки которого могут сниматься импульсы, используемые для каких-либо целей, например, в качестве открывающих импульсов.

В радиаторе (см. схему), имеет то преимущество, перед аналогичными устройствами, что при его использовании не возникает электролиза, приводящего к постепенному разрушению стенок радиатора. Применение кремниевых транзисторов делает прибор мало чувствительным к значительным перепадам температуры. Основа прибора - мультивибратор с одним устойчивым состоянием на транзисторах Т2 и Т3. Схемы удвоения постоянного напряжения на 2кв Его нагрузкой служит сигнальная лампа Л7. Транзистор Т4 способствует более четкой фиксации рабочего состояния (открыт - закрыт) транзистора Т2.Когда щуп в радиаторе погружен в воду, на базу транзистора Т1 поступает напряжение смещения и он открыт. При этом база и эмиттер транзистора Т2 имеют одинаковый потенциал и тот самый транзистор будет закрыт. В результате мультивибратор не работает, а сигнальная лампа Л1 обесточена. Диод Д1 защищает базу транзистора T2 от перенапряжений. При понижении в радиаторе, щуп оказывается в воздухе. В результате этого транзистор Т1 закрывается, а Т2 открывается. Теперь мультивибратор будет работать с часто...

Для схемы "Схема управления насосом"

Это устройство может пригодиться на даче или в фермерском хозяйстве, а также во многих других случаях, когда требуется контроль и поддержание определенного в резервуаре. Так, при пользовании погружным насосом для откачки воды из колодца на полив, нужно следить, чтобы уровень воды не снизился ниже положения насоса. В противном случае, насос, работая на холостом ходу (без воды), будет перегреваться и выйдет из строя. Избавиться от всех этих проблем вам поможет универсального автоматического устройства (рис.1). Она отличается простотой и надежностью, а также предусматривает вероятность многофункционального использования (водоподъем или дренаж). Цепи схемы никак не связаны с корпусом резервуара, что исключает электрохимическую коррозию поверхности резервуара, в отличие от многих опубликованных ранее схем аналогичного назначения. Принцип работы схемы основан на использовании электропроводности воды, которая, попадая между пластинами датчиков, замыкает цепь базового тока транзистора VT1. При этом срабатывает реле К1 и своими контактами К1.1 включает или выключает (зависит от положения 82) насос. ...

Для схемы "Емкостное реле для управления освещением"

В часто посещаемых помещениях для экономии электроэнергии удобно применить емкостное реле для менеджмента освещением. При входе в помещение, если надобно включить свет, проходят вблизи емкостного датчика, который подает сигнал в емкостное реле, и лампа включается. Выходя из помещения, если надобно отключить свет, проходят вблизи емкостного на выключение, и реле выключает лампу. В ждущем режиме устройство потребляет ток приблизительно 2 мА.Принципиальная схема емкостного реле изображена на рисунке. Устройство по схеме подобно реле времени, у которого времязадающий узел заменен триггером на логических элементах DD1.1, DD1.2. При включении тумблера S1 через лампу HL1 будет протекать ток, если на базу транзистора VT1 с выхода элемента DD1.1 поступает напряжение высокого уровня. Транзистор VT1 при этом открыт, и тринистор VD6 открывается в начале каждого полупериода напряжения. Триггер переключается от емкостного тока утечки, при приближении человека на некоторое расстояние к одному из емкостных датчиков, если до этого он переключился от приближения к другому. Каталок схема печатни плата золотаискателязе При смене напряжения высокого уровня на базе транзистора VT1 на напряжение низкого уровня тринистор VD6 закроется, и лампа погаснет.Емкостные датчики Е1 и Е2 представляют собой отрезки коаксиального кабеля (например, РК-100. ИКМ-2), со свободного конца которых на длину приблизительно 0.5 м снят экран. Изоляцию с центрального провода снимать не надобно. Край экрана надобно изолировать. Датчики можно прикрепить к дверной раме. Длину неэкрани-рованной части датчиков и сопротивление резисторов R5. R6 подбирают при налаживании устройства так. чтобы триггер надежно переключался при прохождении человека на расстоянии 5...10см от датчика.При налаживании устройства надобно соблюдать меры предосторожности, так как элементы устройства находятся под напряжением...

Для схемы "ТЕРМОРЕГУЛЯТОР НА ТИРИСТОРЕ"

Бытовая электроникаТЕРМОРЕГУЛЯТОР НА Терморегулятор, схема которого изображена на рисунке, предназначен для поддержания постоянной температуры воздуха в помещения, воды в аквариуме и т. п. К нему можно подключать нагреватель мощностью до 500 Вт. Терморегулятор состоит из порогового устройства (на транзисторе Т1 и Т1). электронного реле (на транзисторе ТЗ и тиристоре Д10) и блока питания. Датчиком температуры служит терморезистор R5, включенный в поставленная проблема подачи напряжения на базу транзистора Т1 порогового устройства. Если окружающая среда имеет необходимую температуру, транзистор Т1 порогового устройства закрыт, а Т1 открыт. Транзистор ТЗ и тиристор Д10 электронного реле в этом случае закрыты и напряжение сети не поступает на нагреватель. При понижении температуры среды сопротивление терморезистора увеличивается, в результате чего напряжение на базе транзистора Т1 повышается. Схемы конвертера радиолюбителя Когда оно достигает порога срабатывания устройства, транзистор Т1 откроется, а T2 - закроется. Это приведет к открыванию транзистора T3. Напряжение, возникающее на резисторе R9, приложено между катодом и управляющим электродом тиристора Д10 и будет довольно для открывания его. Напряжение сети через тиристор и диоды Д6-Д9 поступит на нагреватель.Когда температура среды достигнет необходимой величины, терморегулятор отключит напряжение от нагревателя. Переменный резистор R11 служит для установки пределов поддерживаемой температуры. В терморегуляторе применен терморезистор ММТ-4. Трансформатор Тр1 выполнен на сердечнике Ш12Х25. Обмотка I его содержит 8000 витков провода ПЭВ-1 0,1, а обмотка II-170 витков провода ПЭВ-1 0,4.А.СТОЯНОВ г. Загорск...

Для схемы "Детектор переменного тока"

Устройство предназначено для контроля проводника с протекающим по нему переменным током. Чувствительность прибора такова, что позволяет бесконтактным способом контролировать проводники с током 250 мА и более.На рис. 1 приведена принципиальная электрическая схема прибора.Датчиком переменного электрического тока с частотой бытовой сети (50 Гц) является катушка индуктивности L1. L1 выполнена в виде U-образного сердечника диаметром 2,5см, на который намотано 800 витков провода из магнитного материала диаметром 0.15...0,25 мм (рис. 2).Сердечник катушки может быть взят от центральной части межкаскадных или согласующих трансформаторов НЧ, или малогабаритных электромагнитных звонков. Главное требование к сердечнику - при намотанной обмотке L1 через центр катушки должен свободно продеваться контролируемый проводник (ее диаметр может составлять несколько единиц, а то и десятков миллиметров). Следует отметить, что через датчик должен быть пропущен только один из исследуемых проводов (фазный или нулевой), так как в случае наличия двух проводников внутри датчика может предстать компенсация магнитного поля и прибор не отреагирует должным образом на протекающий в проводнике ток. Блок питания на тиристорах схемы При экспериментировании с прибором брался сдвоенный сетевой кабель, в котором делался продольный разрез изоляции, образуя при этом два раздельных проводника, один из которых и помещался в U-образный захват.В обмотке магнитного захвата (U-образный датчик) наводится, приблизительно, напряжение приблизительно 4 мВ при исследовании сетевого провода с током 250 мА (соответствует мощности, потребляемой нагрузкой 55 Вт при напряжении сети 220 В). Сигнал с магнитного усиливается в 200 раз операционным усилителем DA1.1, далее детектируется пиковым детектором VD1, С2 и посту...

Для схемы "АВТОМАТ ДЛЯ ПОЛИВКИ РАСТЕНИЙ"

Бытовая электроникаАВТОМАТ ДЛЯ ПОЛИВКИ РАСТЕНИЙПринципиальная схема простого автомата, включающего подачу воды на контролируемый участок почвы (например, в теплице) при уменьшении ее влажности ниже определенного уровня, приведена на рисунке. Устройство состоит из эмиттерного повторителя на транзисторе V1 и триггера Шмитта (транзисторы V2 и V4). Исполнительным механизмом управляет электромагнитное реле К1. Датчиками влажности служат два металлических или угольных электрода. погруженные в грунт.При довольно влажной почве сопротивление между электродами небольшое н поэтому транзистор V2 будет открыт, транзистор V4 - закрыт, а реле К1 - обесточено.По мере высыхания почвы сопротивление грунта между электродами возрастает, напряжение смещения на базе транзисторов V1 и V3 уменьшается, Наконец, при определенном напряжении на базе транзистора V1 открывается транзистор V4 н срабатывает реле К1. Его контакты (на рисунке не показаны) замыкают цепь включения заслонки или электрического насоса, осуществляющих подачу для поливки контролируемого участка почвы. Как подключить реостат к зарядному устройству При повышении влажности сопротивление почвы между электродами уменьшается, после достижения требуемого открывается транзистор V2, транзистор V4 закрывается и реле обесточивается. Поливка прекращается. Переменным резистором R2 устанавливают порог срабатывания устройства, отчего в конечном итоге зависит влажность почвы на контролируемом участке. Защита транзистора V4 от бросков напряжения отрицательной полярности при выключении реле К1 осуществляется диодом V3."Elecnronique pratique" (Франция), N 1461Примечание. В устройстве можно применить транзисторы КТ316Г (V1, V2), KТ602A (V4) и диоды Д226 (V3)....

Для схемы "Простой индикатор уровня сигнала на ИН13"

Радиолюбителю-конструкторуПростой индикатор сигнала на ИН13Схемка довольна старая, но довольно простая и может кому-то пригодится в качестве индикатора выходного сигнала УНЧ. В принципе можно использовать и в качестве линейного вольтметра изменив входную часть.ИН13 представляет собой газоразрядный индикатор в виде стеклянной трубки длиной около13 см. Транзистор можно применить и какой-нибудь современный высоковольтный....

Для схемы "УЗЕЛ УПРАВЛЕНИЯ НАСОСОМ"

Бытовая электроникаУЗЕЛ УПРАВЛЕНИЯ НАСОСОМДля периодического заполнения резервуара или, наоборот, удаления из него жидкости можно использовать устройство, принципиальная схема которого изображена на рис. 1, а конструкция - на рис.2. Применение в нем герконовых датчиков имеет некоторые преимущества - тут нет электрического контакта между жидкостью и электронным блоком, что позволяет использовать его для откачки конденсационной воды, смеси с маслами и др. Кроме того, использование этих датчиков повышает надежность узла и долговечность его работы. Puc.1В автоматическом режиме устройство работает следующим образом. При повышении жидкости в баке кольцевой постоянный магнит 8 (рис. 2), который закреплен на штоке 6, связанном с поплавком 9, приближается снизу к геркону 3 верхнего (SF2 на схеме) и вызывает его замыкание. Автоматическое отключение радиоаппаратуры Тринистор VS1 открывается, реле К1 срабатывает, включая электродвигатель насоса контактами К1.1 и К1.2 и самоблокируясь контактами К1.3 (если реле нечетко самоблокируется, его обмотку надобно зашунтировать оксидным конденсатором емкостью 10... 50 мкФ).Puc2Насос откачивает жидкость, ее уровень в резервуаре понижается, приближаясь к установленному нижнему. Магнит приближается к горкому 2 (SF3 по схеме) нижнего появления жидкости (щупов) В1; - схемы сброса C5-R4; - резистивного делителя напряжения R1-R2 с помехогасящим конденсатором С1.- первого таймера-одновибратора на элементах DD1.1. Описание микросхемы 0401 С2. R3, VD2, VD3; - второго таймера-одновибратора - DD1.2, С6, VD6, R8 с устройством запуска на элементах VT2, R5; - логического элемента 2ИЛИ - VD4, VD5, R6; - токового ключа на полевом транзисторе VT1 с комбинированной нагрузкой на элементах HL1, HL2. С4и активном зуммере А1 с встроенным генератором и излучателем в одном корпусе.При замыкании тумблера SA1 "Питание" ИУВ устанавливается в дежурный режим и пребывает в таком состоянии, пока сопротивление его датчика велико, т.е. датчик сухой. Когд...

Тиристоры — это разновидность полупроводниковых приборов. Они предназначены для регулирования и коммутации больших токов. Тиристор позволяет коммутировать электрическую цепь при подаче на него управляющего сигнала. Это делает его похожим на транзистор.

Как правило, тиристор имеет три вывода, один из которых управляющий, а два других образуют путь для протекания тока. Как мы знаем, транзистор открывается пропорционально величине управляющего тока. Чем он больше, тем больше открывается транзистор, и наоборот. А у тиристора все устроено иначе. Он открывается полностью, скачкообразно. И что самое интересное, не закрывается даже при отсутствии управляющего сигнала.

Принцип действия

Рассмотрим работу тиристора по следующей простой схеме.

К аноду тиристора подключается лампочка или светодиод, а к ней подсоединяется плюсовой вывод источника питания через выключатель К2. Катод тиристора подключен к минусу питания. После включения цепи на тиристор подается напряжение, однако светодиод не горит.

Если нажать на кнопку К1, ток через резистор поступит на управляющий электрод, и светодиод начал светиться. Часто на схемах его обозначают буквой «G», что обозначает gate, или по-русски затвор (управляющий вывод).

Резистор ограничивает ток управляющего вывода. Минимальный ток срабатывания данного рассматриваемого тиристора составляет 1 мА, а максимально допустимый ток 15 мА. С учетом этого в нашей схеме подобран резистор сопротивлением 1 кОм.

Если снова нажать на кнопку К1, то это не повлияет на тиристор, и ничего не произойдет. Чтобы перевести тиристор в закрытое состояние, нужно отключить питание выключателем К2. Если же снова подать питание, то тиристор вернется в исходное состояние.

Этот полупроводниковый прибор, по сути, представляет собой электронный ключ с фиксацией. Переход в закрытое состояние происходит и тогда, когда напряжение питания на аноде уменьшается до определенного минимума, примерно 0,7 вольта.

Особенности устройства

Фиксация включенного состояния происходит благодаря особенности внутреннего устройства тиристора. Примерная схема выглядит таким образом:

Обычно он представляется в виде двух транзисторов разной структуры, связанных между собой. Опытным путем можно проверить, как работают транзисторы, подключенные по такой схеме. Однако, имеются отличия в вольтамперной характеристике. И еще нужно учитывать, что приборы изначально спроектированы так, чтобы выдерживать большие токи и напряжения. На корпусе большинства таких приборов имеется металлический отвод, на который можно закрепить радиатор для рассеивания тепловой энергии.

Тиристоры выполняются в различных корпусах. Маломощные приборы не имеют теплового отвода. Распространенные отечественные тиристоры выглядят следующим образом. Они имеют массивный металлический корпус и выдерживают большие токи.

Основные параметры тиристоров

  • Максимально допустимый прямой ток . Это максимальное значение тока открытого тиристора. У мощных приборов оно достигает сотен ампер.
  • Максимально допустимый обратный ток .
  • Прямое напряжение . Это падение напряжения при максимальном токе.
  • Обратное напряжение . Это максимально допустимое напряжение на тиристоре в закрытом состоянии, при котором тиристор может работать без нарушения его работоспособности.
  • Напряжение включения . Это минимальное напряжение, приложенное к аноду. Здесь имеется ввиду минимальное напряжение, при котором вообще возможна работа тиристора.
  • Минимальный ток управляющего электрода . Он необходим для включения тиристора.
  • Максимально допустимый ток управления .
  • Максимально допустимая рассеиваемая мощность .

Динамический параметр

Время перехода тиристора из закрытого состояния в открытое при поступлении сигнала.

Виды тиристоров

Различают несколько разновидностей тиристоров. Рассмотрим их классификацию.

По способу управления разделяют на:

  • Диодные тиристоры, или по-другому динисторы. Они открываются импульсом высокого напряжения, которое подается на катод и анод.
  • Триодные тиристоры, или тринисторы. Они открываются током управления электродом.

Триодные тиристоры в свою очередь разделяются:

  • Управление катодом – напряжение, образующее ток управления, поступает на электрод управления и катод.
  • Управление анодом – управляющее напряжение подходит на электрод и анод.

Запирание тиристора производится:

  • Уменьшением анодного тока – катод меньше тока удержания.
  • Подачей напряжения запирания на электрод управления.

По обратной проводимости тиристоры делятся:

  • Обратно-проводящие – имеют малое обратное напряжение.
  • Обратно-непроводящие – обратное напряжение равно наибольшему прямому напряжению в закрытом виде.
  • С ненормируемым обратным значением напряжения – изготовители не определяют значение этой величины. Такие приборы применяются в местах, где обратное напряжение исключено.
  • Симистор – пропускает токи в двух направлениях.

Используя симисторы, нужно знать, что они действуют условно симметрично. Основная часть симисторов открывается, когда на электрод управления поступает положительное напряжение по сравнению с катодом, а на аноде может быть любая полярность. Но если на анод приходит отрицательное напряжение, а на электрод управления положительное, то симисторы не открываются, и могут выйти из строя.

По быстродействию разделяют по времени отпирания (включения) и времени запирания (отключения).

Разделение тиристоров по мощности

При действии тиристора в режиме ключа наибольшая мощность коммутируемой нагрузки определяется напряжением на тиристоре в открытом виде при наибольшем токе и наибольшей рассеиваемой мощности.

Действующая величина тока на нагрузку не должна быть выше наибольшей рассеиваемой мощности, разделенной на напряжение в открытом виде.

Простая сигнализация на основе тиристора

На основе тиристора можно сделать простую сигнализацию, которая будет реагировать на свет, издавая звук с помощью пьезоизлучателя. На управляющий вывод тиристора подается ток через фоторезистор и подстроечный резистор. Свет, попадая на фоторезистор, уменьшает его сопротивление. И на управляющий вывод тиристора начинает поступать отпирающий ток, достаточный для его открывания. После этого включается пищалка.

Подстроечный резистор предназначен для того, чтобы настроить чувствительность устройства, то есть, порог срабатывания при облучении светом. Самое интересное, что даже при отсутствии света тиристор продолжает оставаться в открытом состоянии, и сигнализирование не прекращается.

Если напротив светочувствительного элемента установить световой луч так, чтобы он светил немного ниже окошечка, то получится простейший датчик дыма. Дым, попадая между источником и приемником света, будет рассеивать свет, что вызовет запуск сигнализации. Для этого устройства обязательно нужен корпус, для того, чтобы на приемник света не поступал свет от солнца или искусственных источников света.

Открыть тиристор можно и другим способом. Для этого достаточно кратковременно подать небольшое напряжение между управляющим выводом и катодом.

Регулятор мощности на тиристоре

Теперь рассмотрим использование тиристора по прямому назначению. Рассмотрим схему простого тиристорного регулятора мощности, который будет работать от сети переменного тока напряжением 220 вольт. Схема простая и содержит всего пять деталей.

  • Полупроводниковый диод VD.
  • Переменный резистор R1.
  • Постоянный резистор R2.
  • Конденсатор С.
  • Тиристор VS.

Их рекомендованные номинальные значения показаны на схеме. В качестве диода можно использовать КД209, тиристор КУ103В или мощнее. Резисторы желательно использовать мощностью не менее 2 ватт, конденсатор электролитический на напряжение не менее 50 вольт.

Эта схема регулирует лишь один полупериод сетевого напряжения. Если представить, что мы из схемы убрали все элементы, кроме диода, то он будет пропускать только полуволну переменного тока, и на нагрузку, к примеру, на паяльник или лампу накаливания поступит лишь половина мощности.

Тиристор позволяет пропускать дополнительные, условно говоря, кусочки полупериода, срезанного диодом. При изменении положения переменного резистора R1 напряжение на выходе будет меняться.

К положительному выводу конденсатора включен управляющий вывод тиристора. Когда напряжение на конденсаторе возрастает до напряжения включения тиристора, он открывается и пропускает определенную часть положительного полупериода. Переменный резистор будет определять скорость зарядки конденсатора. А чем быстрее он зарядится, тем раньше откроется тиристор, и успеет до смены полярности пропустить часть положительного полупериода.

На конденсатор отрицательная полуволна не поступает, и напряжение на нем одной полярности, поэтому не страшно, что он имеет полярность. Схема позволяет изменять мощность от 50 до 100%. Для паяльника это в самый раз подходит.

Тиристор пропускает ток в одном направлении от анода к катоду. Но существуют разновидности, которые пропускают ток в обоих направлениях. Они называются симметричные тиристоры или симисторы. Они используются для управления нагрузкой в цепях переменного тока. Существует большое количество схем регуляторов мощности на их основе.

Трансмиссия