Зарядное устройство для автомобильных аккумуляторов. КТ825А. Простой лабораторный блок питания Схемы бп на кт825

Как-то недавно мне в интернете попалась одна схема очень простого блока питания с возможностью регулировки напряжения. Регулировать напряжение можно было от 1 Вольта и до 36 Вольт, в зависимости от выходного напряжения на вторичной обмотке трансформатора.

Внимательно посмотрите на LM317T в самой схеме! Третья нога (3) микросхемы цепляется с конденсатором С1, то есть третяя нога является ВХОДОМ, а вторая нога (2) цепляется с конденсатором С2 и резистором на 200 Ом и является ВЫХОДОМ.

С помощью трансформатора из сетевого напряжения 220 Вольт мы получаем 25 Вольт, не более. Меньше можно, больше нет. Потом все это дело выпрямляем диодным мостом и сглаживаем пульсации с помощью конденсатора С1. Все это подробно описано в статье как получить из переменного напряжения постоянное . И вот наш самый главный козырь в блоке питания – это высокостабильный регулятор напряжения микросхема LM317T. На момент написания статьи цена этой микросхемы была в районе 14 руб. Даже дешевле, чем буханка белого хлеба.

Описание микросхемы

LM317T является регулятором напряжения. Если трансформатор будет выдавать до 27-28 Вольт на вторичной обмотке, то мы спокойно можем регулировать напряжение от 1,2 и до 37 Вольт, но я бы не стал подымать планку более 25 вольт на выходе трансформатора.

Микросхема может быть исполнена в корпусе ТО-220:

или в корпусе D2 Pack

Она может пропускать через себя максимальную силу тока в 1,5 Ампер, что вполне достаточно для питания ваших электронных безделушек без просадки напряжения. То есть мы можем выдать напряжение в 36 Вольт при силе тока в нагрузку до 1,5 Ампера, и при этом наша микросхема все равно будет выдавать также 36 Вольт – это, конечно же, в идеале. В действительности просядут доли вольта, что не очень то и критично. При большом токе в нагрузке целесообразней поставить эту микросхему на радиатор.

Для того, чтобы собрать схему, нам также понадобится переменный резистор на 6,8 Килоом, можно даже и на 10 Килоом, а также постоянный резистор на 200 Ом, желательно от 1 Ватта. Ну и на выходе ставим конденсатор в 100 мкФ. Абсолютно простая схемка!

Сборка в железе

Раньше у меня был очень плохой блок питания еще на транзисторах. Я подумал, почему бы его не переделать? Вот и результат;-)


Здесь мы видим импортный диодный мост GBU606. Он рассчитан на ток до 6 Ампер, что с лихвой хватает нашему блоку питания, так как он будет выдавать максимум 1,5 Ампера в нагрузку. LM-ку я поставил на радиатор с помощью пасты КПТ-8 для улучшения теплообмена. Ну а все остальное, думаю, вам знакомо.


А вот и допотопный трансформатор, который выдает мне напряжение 12 Вольт на вторичной обмотке.


Все это аккуратно упаковываем в корпус и выводим провода.


Ну как вам? ;-)


Минимальное напряжение у меня получилось 1,25 Вольт, а максимальное – 15 Вольт.



Ставлю любое напряжение, в данном случае самые распространенные 12 Вольт и 5 Вольт



Все работает на ура!

Очень удобен этот блок питания для регулировки оборотов мини-дрели , которая используется для сверления плат.


Аналоги на Алиэкспресс

Кстати, на Али можно найти сразу готовый набор этого блока без трансформатора.


Лень собирать? Можно взять готовый 5 Амперный меньше чем за 2$:


Посмотреть можно по этой ссылке.

Если 5 Ампер мало, то можете посмотреть 8 Амперный. Его вполне хватит даже самому прожженному электронщику:


При создании различных электронных устройств, рано или поздно, встаёт вопрос о том, что использовать в качестве источника питания для самодельной электроники. Допустим, собрали вы какую-нибудь светодиодную мигалку, теперь её нужно от чего-то аккуратно запитать. Очень часто для этих целей используют различные зарядные устройства для телефонов, блоки питания компьютеров, всевозможные сетевые адаптеры, которые никак не ограничивают ток, отдаваемый в нагрузку.

А если, допустим, на плате этой самой светодиодной мигалки случайно остались незамеченными две замкнутые дорожки? Подключив её к мощному компьютерному блоку питания собранное устройство легко может сгореть, если на плате имеется какая-либо ошибка монтажа. Именно для того, чтобы не случалось таких неприятных ситуаций, существуют лабораторные блоки питания с защитой по току. Заранее зная, какой примерно ток будет потреблять подключаемое устройство, мы можем предотвратить короткое замыкание, и, как следствие, выгорание транзисторов и нежных микросхем.
В этой статье рассмотрим процесс создания именно такого блока питания, к которому можно подключать нагрузку, не боясь, что что-нибудь сгорит.

Схема блока питания


Схема содержит в себе микросхему LM324, которая совмещает в себе 4 операционных усилителя, вместо неё можно ставить TL074. Операционный усилитель ОР1 отвечает за регулировку выходного напряжения, а ОР2-ОР4 следят за потребляемым нагрузкой током. Микросхема TL431 формирует опорное напряжение, примерно равное 10,7 вольт, оно не зависит от величины питающего напряжения. Переменный резистор R4 устанавливает выходное напряжение, резистором R5 можно подогнать рамки изменения напряжения под свои нужны. Защита по току работает следующим образом: нагрузка потребляет ток, который протекает через низкоомный резистор R20, который называется шунтом, величина падения напряжения на нём зависит от потребляемого тока. Операционный усилитель ОР4 используется в качестве усилителя, повышая малое напряжение падения на шунте до уровня 5-6 вольт, напряжение на выходе ОР4 меняется от нуля до 5-6 вольт в зависимости от тока нагрузки. Каскад ОР3 работает в качестве компаратора, сравнивая напряжение на своих входах. Напряжение на одном входе задаётся переменным резистором R13, который устанавливает порог срабатывания защиты, а напряжение на втором входе зависит от тока нагрузки. Таким образом, как только ток превысит определённый уровень, на выходе ОР3 появится напряжение, открывающее транзистор VT3, который, в свою очередь, подтягивает базу транзистора VT2 к земле, закрывая его. Закрытый транзистор VT2 закрывает силовой VT1, размыкая цепь питания нагрузки. Происходят все эти процессы за считанные доли секунды.
Резистор R20 стоит взять мощностью ватт на 5, чтобы предотвратить его возможный нагрев при долгой работе. Подстроечный резистор R19 задаёт чувствительность по току, чем больше его номинал, тем большей чувствительности можно добиться. Резистор R16 настраивает гистерезис защиты, рекомендую не увлекаться с повышением его номинала. Сопротивление 5-10 кОм обеспечит чёткое защёлкивание схемы при срабатывании защиты, более большое сопротивление даст эффект ограничения по току, когда напряжение не выходе будет пропадать не полностью.
В качестве силового транзистора можно применить отечественные КТ818, КТ837, КТ825 или импортный TIP42. Особое внимание стоит уделить его охлаждению, ведь вся разница входного и выходного напряжение будет рассеиваться в виде тепла на этом транзисторе. Именно поэтому не стоит использовать блок питания на малом выходном напряжении и большом токе, нагрев транзистора при этом будет максимальным. Итак, перейдём от слов к делу.

Изготовление печатной платы и сборка

Печатная плата выполняется методом ЛУТ, который неоднократно описывался в интернете.




На печатной плате добавлен светодиод с резистором, которые не указаны в схеме. Резистор для светодиода подойдёт номиналом 1-2 кОм. Этот светодиод включается при срабатывании защиты. Также добавлены два контакта, обозначенные словом «Jamper», при их замыкании блок питания выходит из защиты, «отщёлкивается». Кроме того, добавлен конденсатор 100 пФ между 1 и 2 выводом микросхемы, он служит для защиты от помех и обеспечивает стабильную работу схемы.




Скачать плату:

(cкачиваний: 951)

Настройка блока питания

Итак, после сборки схемы можно приступить к её настройке. Первым делом, подаём питание 15-30 вольт и замеряем напряжение на катоде микросхемы TL431, оно должно быть примерно равно 10,7 вольт. Если напряжение, подаваемое на вход блока питания, небольшое (15-20 вольт), то резистор R3 стоит уменьшить до 1 кОм. Если опорное напряжение в порядке, проверяем работу регулятора напряжения, при вращении переменного резистора R4 оно должно меняться от нуля до максимума. Далее, вращаем резистор R13 в самом крайнем его положении возможно срабатывание защиты, когда этот резистор подтягивает вход ОР2 к земле. Можно установить резистор номиналом 50-100 Ом между землёй и выводом крайним выводом R13, который подключается к земле. Подключаем какую-либо нагрузку к блоку питания, устанавливаем R13 в крайнее положение. Повышаем напряжение на выходе, ток будет расти и в какой-то момент сработает защита. Добиваемся нужной чувствительности подстроечным резистором R19, затем вместо него можно впаять постоянный. На этом процесс сборки лабораторного блока питания закончен, можно установить его в корпус и пользоваться.

Индикация



Для индикации выходного напряжения весьма удобно использовать стрелочную головку. Цифровые вольтметры хоть и могут показывать напряжение вплоть до сотых долей вольта, постоянно бегущие цифры плохо воспринимаются глазом человека. Именно поэтому рациональнее использовать именно стрелочные головки. Сделать вольтметр из такой головки очень просто – достаточно поставить последовательно с ней подстроечный резистор номиналом 0,5 – 1 МОм. Теперь нужно подать напряжение, величина которого заранее известна и подстроечным резистором подстроить положение стрелки, соответствующее прикладываемому напряжению. Успешной сборки!

Радиоэлектронные конструкции на ОУ можно питать как от однополярного, так и двухполярного источников питания. Лучшие результаты работы конструкции получаются при их питании от двухполярного источника.

Поэтому рассмотрим практическую схему двухполярного источника питания. Источник питания собран на дискретных элементах и состоит из двух однотранзисторных стабилизаторов напряжения.

Принципиальная схема

Схема двухполярного источника питания приведена на рис. 1. Основу схемы составляют три обычных стабилизатора напряжения на одном транзисторе. Особенностью схемы является наличие стабилизатора напряжения на транзисторе ѴТЗ.

Наличие этого каскада диктуется следующими соображениями. Из схемы видно, что стабилизаторы на транзисторах ѴТІ и ѴТ2 не имеют защиты от короткого замыкания.

В случае же короткого замыкания выхода верхнего по схеме плеча эмиттер ѴТІ замыкается с эмиттером ѴТ2 и на нижнем плече относительно «общего» провода появляется напряжение минус 24 В.

Такая ситуация может привести к выходу из строя питающей аппаратуры. Для предотвращения такой опасности и введен по минусу питания каскад на транзисторе ѴТЗ.

Рис. 1. Принципиальная схема двуполярного нерегулируемого источника питания на дискретных элементах.

Детали и печатная плата

Для работы источника необходим силовой трансформатор, дающий на вторичной обмотке напряжение 27...30 В. Для этой цели подойдет унифицированный трансформатор ТП8-18-220-50 с магнитопроводом ШЛ 16x25.

Детали питающего устройства кроме трансформатора собраны на печатной плате из одностороннего фольгированного текстолита размером 95x35 мм (рис. 2).

Рис. 2. Печатная плата для схемы двуполярного стабилизатора-преобразователя напряжения.

Рис. 3. Монтаж деталей на печатной плате для двухполярного источника питания.

Для обеспечения нормального температурного режима работы транзисторов следует для них изготовить теплоотводы из дюралюминия.

При исправных деталях и правильной сборки устройство начинает сразу работать. Устройство особой наладки не требует, желательно проконтролировать вольтметром величины выходного напряжения и если оно отличается от требуемого, то надо подобрать стабилитроны VD5, VD7 и резисторы R1 и R2.

Литература: В.М. Пестриков. - Энциклопедия радиолюбителя.

Всех приветствую. Эта статья является дополнением к видео. Рассмотрим мы мощный лабораторный блок питания, который пока не полностью завершен, но функционирует очень хорошо.

Лабораторный источник одноканальный, полностью линейный, с цифровой индикацией, защитой по току, хотя тут имеется еще и ограничение выходного тока.

Блок питания может обеспечить выходное напряжение от нуля до 20 вольт и ток от нуля до 7,5-8 Ампер, но можно и больше, хоть 15, хоть 20 А, а напряжение может быть до 30 Вольт, мой же вариант имеет ограничение в связи с трансформатором.

На счет стабильности и пульсаций - очень стабильный, на видео видно, что напряжение при токе в 7Ампер не проседает даже на 0,1В, а пульсации при токах 6-7Ампер около 3-5мВ! по классу он может тягаться с промышленными профессиональными источниками питания за пару-тройку сотен долларов.

При токе в 5-6 Ампер пульсации всего 50-60 милливольт, у бюджетных китайских блоков питания промышленного образца - такие же пульсации, но при токах всего в 1-1,5 ампера, то есть наш блок гораздо стабильней и по классу может тягаться с образцами за пару тройку сотен долларов

Не смотря на то, что бок линейный, у него высокий кпд, в нем предусмотрена система автоматического переключения обмоток, что позволит снизить потери мощности на транзисторах при малых выходных напряжениях и большом токе.

Эта система построена на базе двух реле и простой схемы управления, но позже плату убрал, поскольку реле не смотря на заявленный ток более 10 Ампер не справлялись, пришлось купить мощные реле на 30 Ампер, но плату для них пока не сделал, но и без системы переключения блок работает отлично.

Кстати, с системой переключения блок не будет нуждаться в активном охлаждении, хватит и громадного радиатора сзади.

Корпус от промышленного сетевого стабилизатора, стабилизатор куплен новый, с магазин, только ради корпуса.

Оставил только вольтметр, сетевой тумблер, предохранитель и встроенную розетку.

Под вольтметром два светодиода, один показывает то, что на плату стабилизатора поступает питание, второй, красный, показывает, что блок работает в режиме стабилизации тока.

Индикация цифровая, разработана моим хорошим другом. Это именной индикатор, о чем свидетельствует приветствие, прошивку с платой найдете в конце статьи, а ниже схема индикатора

А по сути это вольт/ампер ваттметр, под дисплеем три кнопки, которые позволят выставить ток защиты и сохранить значение, максимальный ток 10 Ампер, Защита релейная, реле опять же слабенькое, и при больших токах наблюдается довольно сильное нагревание контактов.

Снизу клеммы питания, и предохранитель по выходу, тут к стати реализована защита от дурака, если использовать БП в качестве зарядного устройства и случайно перепутать полярность подключения, диод откроется спалив предохранитель.

Теперь о схеме. Это очень популярная вариация на базе трех ОУ, также китайцы штампуют массово, в этом источнике применена именно китайская плата, но с большими изменениями.

Вот схема, которая у меня получилась, красным выделено то, что было изменено.

Начнем с диодного моста. Мост двухполупериодный, выполнен на 4-х мощных сдвоенных диодах шоттки типа SBL4030, на 40 вольт 30 ампер, диоды в корпусе TO-247.

В одном корпусе два диода, я их запараллелил, в итоге получил мост, на котором очень малое падение напряжение, следовательно и потерь, при максимальных токах "тот мост еле теплый, но не смотря на это диоды установлены на алюминиевый теплоотвод, в лице массивной пластины. Диоды изолированы от радиатора слюдяной прокладкой.

Была создана отдельная плата для этого узла.

Далее силовая часть. Родная схема всего на 3 Ампера, переделанная спокойно может отдать 8 Ампер с таким раскладом. Ключей уже два Это мощные составные транзисторы 2SD2083 с током коллектор 25 Ампер. уместно замена на КТ827, они покруче.
Ключи, по сути запараллеляны, в эмиттерной цепи стоят выравнивающие резисторы на 0,05 Ом 10 ватт, а точнее для каждого транзистора использовано 2 резистора по 5 ватт 0,1Ом параллельно.

Оба ключа установлены на массивный радиатор, их подложки изолированы от радиатора, этого можно не сделать, поскольку коллекторы общие, но радиатор прикручен к корпусу, а любое короткое замыкание может иметь плачевные последствия.

Сглаживающие конденсаторы после выпрямителя имеют суммарную емкость около 13.000 мкФ, подключены параллельно.
Токовый шунт и указанные конденсаторы расположены на одной печатной плате.

Поверх (на схеме) переменного резистора, отвечающего за регулировку напряжения, был добавлен постоянный резистор. Дело в том, что при подачи питания (скажем 20Вольт) от трансформатора, мы получаем некоторое падение на диодном выпрямителе, но затем конденсаторы заряжаются до амплитудного значения (около 28 Вольт), то есть на выходе блока питания максимальное напряжение будет больше, чем напряжение отдаваемое трансформатором. Поэтому при подключении нагрузки на выход блока будет большая просадка, это неприятно. Задача ранее указанного резистора ограничить напряжение до 20 Вольт, то есть если даже крутить переменник на максимум, более 20Вольт выставить на выходе невозможно.

Трансформатор - переделанный ТС-180, обеспечивает переменное напряжение около 22-х вольт и ток не менее 8 А, имеются отводы на 9 и 15 вольт для схемы переключения. К сожалению, под рукой не было нормального обмоточного провода, поэтому новые обмотки были намотаны монтажным, многожильмым медным проводом 2,5кв.мм, Такой провод имеет толстую изоляцию, поэтому мотать обмотку на напряжение более 20-22В было невозможно (это с учетом того, что оставил родные обмотки накала на 6,8В, а новую подключил параллельно с ними).

Система зажигания